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ABSTRACT

Test generation procedures for large VLSI designs are required to achieve close

to 100% fault coverage using a small number of tests. They also must accommodate

on-chip test compression circuits which are widely used in modern designs. To obtain

test sets with small sizes one could use extra hardware such as test points or use

software techniques. An important aspects impacting test generation is the number

of specified positions, which facilitate the encoding of test cubes when using test

compression logic. Fortuitous detection or generation of tests such that they facilitate

detection of yet not targeted faults, is also an important goal for test generation

procedures.

At first, we consider the generation of compact test sets for designs using on-

chip test compression logic. We introduce two new measures to guide automatic test

generation procedures (ATPGs) to balance between these two contradictory require-

ments of fortuitous detection and number of specifications. One of the new measures

is meant to facilitate detection of yet undetected faults, and the value of the mea-

sures is periodically updated. The second measure reduces the number of specified

positions, which is crucial when using high compression. Additionally, we introduce

a way to randomly choose between the two measures.

We also propose an ATPG methodology tailored for BIST ready designs with

X-bounding logic and test points. X-bounding and test points used to have a signifi-

cant impact on test data compression by reducing the number of specified positions.

iv
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We propose a new ATPG guidance mechanism that balances between reduced specifi-

cations in BIST ready designs, and also facilitates detection of undetected faults. We

also found that compact test generation for BIST ready designs is influenced by the

order in which faults are targeted, and we proposed a new fault ordering technique

based on fault location in a FFR. Transition faults are difficult to test and often

result in longer test lengths, we propose a new fault ordering technique based on test

enumeration, this ordering technique and a new guidance approach was also proposed

for transition faults. Test set sizes were reduced significantly for both stuck-at and

transition fault models.

In addition to reducing data volume, test time, and test pin counts, the test

compression schemes have been used successfully to limit test power dissipation. In-

disputably, toggling of scan cells in scan chains that are universally used to facilitate

testing of industrial designs can consume much more power than a circuit is rated for.

Balancing test set sizes against the power consumption in a given design is therefore a

challenge. We propose a new Design for Test (DFT) scheme that deploys an on-chip

power-aware test data decompressor, the corresponding test cube encoding method,

and a compression-constrained ATPG that allows loading scan chains with patterns

having low transition counts, while encoding a significant number of specified bits

produced by ATPG in a compression-friendly manner. Moreover, the new scheme

avoids periods of elevated toggling in scan chains and reduces scan unload switch-

ing activity due to unique test stimuli produced by the new technique, leading to a

significantly reduced power envelope for the entire circuit under test.

v



www.manaraa.com

PUBLIC ABSTRACT

Test set size is known to increase at a faster rate than device size. Test cost

for a given circuit is directly proportional to the number of independent test data

inputs called test vectors, hence reducing the number of test vectors reduces test

cost. Automatic Test Pattern Generation (ATPG), a tool, used to generate test

patterns is used to generate tests. Decisions made while generating tests play an

important role and should be made in a manner to facilitate detection of undetected

faults. Since, modern design use compression logic a mechanism in which only a

given number of deterministically specified positions can be encoded, reduction in

the number of specified positions is a necessity.

We first propose new heuristics for making ATPG decisions based on un-

detected faults. The heuristics presented create appropriate balance between two

contradictory requirements of allowing a test to facilitate detection of undetected

faults and the number of specified positions in tests. Further, we propose an ATPG

methodology to reduce test set sizes when additional hardware is used to improve

test pattern counts. Next we propose a new fault ordering scheme based on ease of

detection of a fault which also aids in reducing test pattern counts.

When a chip is tested, usually power dissipation is more than functional speci-

fications leading to over-stressing of tested chips, potentially causing damage to chips

during test. We also propose, what we call Isometric Compression Scheme to simul-

taneously reduce test power and test set size.
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1

CHAPTER 1
INTRODUCTION

In deep submicron era device complexity is increasing at a phenomenal rate.

On the same sized die, roughly double the number of transistors are printed every

eighteen months. This increasing density of fabrication also leads to new problems. It

is becoming increasingly difficult to verify that chips which are manufactured match

their functional and operating specifications. Since a percentage of devices manufac-

tured usually do not comply with operating requirements, it is important to screen

them out by testing the manufactured devices in an efficient and cost−effective man-

ner. Unfortunately test cost is known to increase at a faster rate than device size. Ad-

ditionally, due to non-functionality of tests, applied over-testing can affect yield and

impact future operations of device functionality [1, 2, 3]. When a chip is tested, usu-

ally power dissipation is more than functional specifications leading to over−stressing

of tested chips, causing reliability failures and defects that may usually not show up

in normal functional operations. It is therefore important to test chips without com-

promising chip quality and reliability.

In this thesis, we report methods that address some of these concerns. We

address two problems with tests in this work: test data volume (amount of data that

needs to be loaded into a tester) and test application time . Test data volume for a

given circuit is directly proportional to the number of independent test data input

sequences known as test vectors, hence reducing the number of test vectors reduces

test data volume. Usually test data volume is proportional to test application time:
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2

time (cycles) required to apply a test to a circuit under test in the context of present

work; however, exceptions are known [4]. We present two novel techniques that we

introduced [5, 6] to reduce test set sizes in this report. Next, we will also propose

work on test power reduction in the latter part of this thesis [7].

1.1 Testing Basics

A manufacturing test is typically performed once the chip has been manufac-

tured to screen for defective circuits [1, 2, 8]. A typical industrial test environment

consists of a circuit under test (CUT) and equipment called Automatic Test Equip-

ment (ATE). Usually for economic reasons, test time on an ATE is costly. An ATE

has finite memory and stores some vectors to apply them to the chip. ATE sub-

sequently observes the generated response of these vectors and compares them to

expected ”golden” responses. If the chip response deviates from golden response, in

most cases the chip is marked as faulty and is discarded. In some cases, if the chip

complies with most of the existing parameters but does not meet stringent operating

criteria like speed or temperature, the chip can still be used after marking (binning)

as a lower−quality chip that may be used by low end customers. In case of memo-

ries, some connections may be reconfigured to render the chip re-usable; however, it

requires having some additional redundancy on the chip itself [2].

The test vectors stored on an ATE and golden responses are generated using

a software program named ATPG (Automatic Test Pattern Generator) [9, 10]. As

the name suggests, an ATPG automatically generates a test set that can possibly
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separate faulty and non-faulty chips. ATPG usually can operate on two circuit types

combinational and sequential circuits.

A combinational circuit has no memory element in it. It is comparatively eas-

ier for an ATPG to generate test patterns for combinational circuits, since current

input values exclusively determine output values. Test generation for sequential cir-

cuits requires, sequential elements in the circuit to be set to desired values. In this

case, the ATPG needs to create test sequences over many clock cycles to set desired

sequential elements to a desired value. Sequential circuit test generation is typically

more complex in comparison to combinational circuit test generation.

ATPG commonly uses scan−inserted designs for test generation. Scan inser-

tion converts a sequential design into a combinational one in test mode [11]. Flip-flops

in any design are usually not controllable or observable from the output. A proper

initialization sequence may be required to initialize a flip-flop. We connect flip-flops

in design in the form of shift registers named scan-chains to provide full controllabil-

ity − a way to initialize flip-flops with a given value and observability − to observe

what value was present in a given flip-flop. Next, we discuss more details about scan

chains.

1.1.1 Scan Chains

Scan design provides the necessary controllability of a flip-flop by connecting

all flip-flops in a design in the form of one or more shift registers during testing (in

test mode) called scan-chains, as shown in Figure 1.1 . When the test mode signal
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Figure 1.1: Scan Chains

is disabled, the circuit is logically equivalent to its functional mode. The inputs

and outputs of the shift registers obtained are made into primary output and input,

respectively. Because there are two input sources for a scan cell (flip-flops in a scan

chain), a selection mechanism must be provided to allow a scan cell to operate in two

different modes: normal/capture mode, and shift mode. In normal/capture mode,

data input is selected to update the output. In shift mode, scan input is selected to

update the output. If n is the number of flip-flops in a scan-chain we can control

or observe any flip-flop in maximum n shifts. Various scan chain methods are used.

The commonly used methodology is replacing design flip-flops with Muxed scan flops.

Since scan-chains provide full controllability and observability, the output of a scan-

cell is similar to a primary input and is called Pseudo-Primary Input (PPI) and,
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similarly, input of a scan-cell is essentially a primary output called Pseudo-Primary

Output (PPO), as shown in Figure 1.1.

Muxed Scan Cell: This is the most widely used scan-cell design [1, 2]. Muxed

scan cell shown in Figure 1.2 consists of a D flip-flop and a multiplexer. The multi-

plexer select input is controlled by scan enable (SE) input to select between the data

input (DI) and the scan input (SI). Muxed scan cell is the most common form of scan

cell used in practice.

ATPG operates on a logical abstraction of real defects called faults. Test

generation complexity is heavily dependent on the target fault type. In the next

section, we discuss some common fault models.
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1.2 Fault Models

Fault models are logical abstractions of real defects. Using a logical fault model

makes it easier to simulate the impact of a real defect, to a large extent. However,

in practice, fault models have their handicaps and not all defects can be modeled

accurately with the same fault model. Using logic−level fault models can simplify

simulating the fault effect caused by the real defect. Fault models, such as stuck-at

fault model, bridge fault mode, open fault mode, transition fault model, path delay

fault model, and cell internal fault mode are most commonly used.

Stuck-at fault model: A stuck-at-v [1] fault on a line l forces a logic value v on

the line l. Line l can be primary inputs, primary outputs, gate inputs and outputs,

fanout stems, and fanout branches. A stuck-at fault can be of two types: stuck at

a constant value v, where v is 0 or 1, referred to as stuck-at-0 (SA0), or stuck-at-1

(SA1), respectively.

Transition fault model: In some cases, gate delay causes the gate to switch at

a lower than normal speed when its inputs change. When this delay is large enough,

the defect is modeled as a transition delay fault [12]. A transition delay fault occurs

when the time required for switching outputs from 0 (1) to 1 (0) in the gate, due to

a change in the gates inputs, takes substantially (infinitely) longer than its normal

time. Slow change from 0(1)-to-1(0) is called slow-to-rise (fall) fault.

Path Delay Fault Model: The path delay fault model focuses on the testing

of a set of predefined paths in order to detect the cumulative delays along these paths

[13]. A path is a set of gates which starts at a PI/PPI and ends at PO/PPO. The
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path delay fault model takes the cumulative delays along a path into account, while

the transition fault model accounts for gross gate delay on a gate input or output.

Path delay fault is more comprehensive but not used extensively, due to complex

ATPG process and unmanageable test set sizes.

Cell Aware Fault Model: Some fault models were proposed to describe the

defects inside a (complex) gate. Instead of modeling the defects at inputs and outputs

of gates, the internal defect models −− such as stuck-at fault, stuck-open fault,

resistive-open fault and short/bridge −− represent the internal defects existing in

and between transistors and interconnects inside gates [14].

Bridge fault model: An unintended short between two circuit elements is

commonly referred to as a bridging fault [15, 16]. These elements can be transistor

terminals or connections between transistors and gates. The case of an element

being shorted to power (VDD) or ground (VSS) is equivalent to the stuck-at fault

model; however, when two signal wires are shorted together, bridging fault models

are required.

The number of faults detected by a test set (group of tests) can be reported

in two formats:

• Fault Coverage: Percentage of faults detected out of the total number of faults

present in the modeled fault set.

• Test Coverage: Percentage of faults detected from the list of detectable faults.

The above fault models are most commonly used during test generation with ATPG.

In most cases, stuck-at fault ATPG is modified to generate test sets for other fault
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models. Typically ATPG uses combinational or scan−inserted circuits to generate

necessary test sets.

1.3 Scan Types

Some other common scan variations that are used are:

Clock Scan Cell: Input selection in clocked scan is conducted using two inde-

pendent clocks; data clock DCK and shift clock SCK [1, 2]. In shift mode, SCK is

high and is used to shift data into scan-cell. If data needs to be shifted, then DCK is

used to shift data into the scan cell.

Level Sensitive Scan Cell: In order to guarantee race-free operation, three

clocks −− A, B, and C −− are applied in a non overlapping manner. Advantage:

The scan can be applied to latch based design [1, 11].

Replacing all flip-flops in a design with scan cells and stitching them in scan

chain is called full scan architecture. Various types of other scan architecture were

proposed in literature:

Partial Scan: Unlike full-scan design, where all storage elements in a circuit

are replaced with scan cells, partial-scan [17] design only requires that a subset of

storage elements be replaced with scan cells and connected into scan chains.

Random Access Scan: Makes each scan cell randomly and uniquely address-

able, similar to storage cells in a random-access memory (RAM) [18]. Its advantages

lie in reducing test power and test data required for testing. However, routing (inter-

connections wire length) and additional hardware required are high.
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Enhanced Scan: Enhanced scan [19] increases the capacity of a typical scan

cell by allowing it to store two bits of data that can be applied consecutively to the

combinational (functional) logic driven by the scan cells.

1.4 Built-In Self-Test

Traditional test techniques that use ATPG to target single faults for digital

circuit testing have become quite expensive. One approach to alleviate these testing

problems is to incorporate Built-in Self-Test (BIST) [1, 20, 2] features into a digital

circuit at the design stage. With logic BIST, circuits that generate test patterns and

analyze the output responses of the functional circuitry are embedded in the chip.

BIST has several advantages. BIST eliminates the huge test data volume

necessary to store the output responses for comparison. Moreover, a circuit embedded

with BIST circuitry can be easily tested after being integrated into a system or in-

field. Another advantage of BIST is that it aids multiple detection of a fault, which

is known to detect more non-modeled faults.

A typical Built-in-Self Test (BIST) [1, 20] scheme shown in Figure 1.3 consists

of a test pattern generator (TPG) (usually a linear feedback shift register) which

automatically generates test patterns. Usually random patterns are used, however

variations such as weighted random patterns or patterns with low−switching activity

may also be used. The test patterns generated by a TPG are applied to the inputs

of the circuit under test (CUT). The output obtained is observed in a compressed

form called signature by an output response analyzer (ORA). The output signature
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Figure 1.3: BIST scheme

observed by ORA is rendered useless even if a single unknown value referred to as

X reaches the ORA. An application−specific BIST controller applies scan-enable,

clocks, and other control signals in a required sequence. The logic BIST controller

compares the obtained response with the expected response captured by ORA, and

decides on pass/fail.

However, logic BIST patterns are usually aided by other patterns like stored

patterns or externally applied patterns to achieve complete coverage. Problems faced

by logic BIST are:

• Typically fault coverage is very low.



www.manaraa.com

11

• Extra hardware in the form of test points (hardware to make faults in the CUT

testable by pseudo-random patterns) is required to increase coverage [21, 22].

• X-bounding [23] (masking all x-sources by known value during testing) needs

to be performed to suppress all Xs in the design from reaching the ORA.

• Usually large numbers of patterns are required.

A design has to be rendered BIST-ready (with test points and x-source block-

ing) to apply BIST for testing. Next, we discuss directly generating patterns using

an ATPG.

1.5 Test Generation

Test generation process strives to generate a test set which can detect all the

targeted faults. Faults are usually of the same fault model, but a mix of faults from

various fault models can also be used.

The patterns in the test set are ultimately intended to detect defects occurring

in the circuit due to flaws in the manufacturing process. Test generation consists of

two main steps: fault activation and (fault effect) propagation [1, 9], described below.

• Fault activation: Fault activation sets the signal on a given line to a given

value, depending on the fault model. For stuck-at faults, a value opposite to

that produced by a fault is used in order to excite the fault. In case of transition

fault model activating, a fault needs to be assigned two different values to fault

site in consecutive clock cycles.

• Fault propagation: Fault effect propagation means to set proper values to the
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Figure 1.4: Control/Observation point and x-bounding logic

off-path inputs along a selected path so that the path is sensitized and the fault

effect can be observed at an observation point.

Example: Given an AND gate with inputs A, B and output C. To detect a

stuck at 1 fault at the input A, the fault needs to be activated by placing an opposite

value of the fault type on A, i.e. a 0. To propagate the fault effect to output C, B

should be 1 (if B is assigned a value of 1 the output value is uniquely determined by

the value at line A). In case of a fault−free circuit, C is assigned a 0; if a stuck-at 1

fault exists on A, C takes the value 1.

1.6 Test Points and X-bounding Logic

In BIST, the fault coverage is limited by the presence of random pattern−resistant

faults. Test point [21, 22, 24, 25, 26] adds control points and observation points for

providing additional controllability and observability to improve the detection prob-

ability of random pattern resistant faults so they can be detected during BIST. How-

ever, test points can also be used to reduce test set sizes for an ATPG [24]. Test
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points are of two types: control points and observation points. Figure 1.4 (A) and

Figure 1.4(B) show a basic implementation of control points and observation points,

respectively. In Figure 1.4(A), a control point is inserted to increase the controllabil-

ity of line A. A two input AND (OR) gate is used in place of CP for zero(one) control

point. A zero control point needs only one input B as 0 to place a 0 on line A.

Similarly, an observation point in its simplest form is a simple connection from

line A to PO/PPO, as shown in Figure 1.4(B). Any values on line A can be directly

observed on PO/PPO.

A control point v ∈ (0, 1) is typically inserted at a line l to set its value to a

value which is difficult to obtain through circuit input values; the difficulty is measured

by what are called testability measures, of which SCOAP [1] is the most commonly

used. When SCOAP [1] controllability of v is high indicating that setting l to v is

difficult, a typically large number of inputs are needed to be set to desired values to

justify the value v on l. The addition of a control point reduces SCOAP controllability

of v to the least value, and ATPG decisions for a value v on line l are typically guided

toward control points if ATPG makes decisions based on SCOAP values. Similarly

the addition of an observation point reduces SCOAP observability of a line, and an

observation point is used for facilitating observation of fault effect values referred to as

D or D. The insertion of test points impacts ATPG decisions using controllability and

observability. This may have an adverse effect on the detection of yet − undetected

faults during the generation of small test sets unless ATPG decisions are properly

guided.
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An X-source is any circuit element whose output can exhibit unknown (X)

behavior during a test. Because any unknown (X) value that propagates directly or

indirectly to the output response analyzer will corrupt the signature and cause the

BIST design to malfunction, no unknown (X) values can be tolerated. Any unknown

(X) source in the BIST-ready core, which is capable of propagating its unknown (X)

value to the ORA directly or indirectly, must be blocked and fixed using a DFT

repair approach often called X-bounding. Figure 1.4(C) shows a typical X-bounding

mechanism using a MUX. A MUX control point is placed on the line feed by X-source

to place a constant 1 or 0 on it.

An X-source in a circuit is typically assigned very high controllability; bound-

ing X-source reduces SCOAP controllability for both 0 and 1 for the X-source. Making

justification decisions to be guided toward X-bounding [22] logic reduces the number

of specifications required for line justification. Hence, X-bounding has the similar

impact as a 1 or 0 control point on a line l.

1.7 Test Compression

With ever increasing device complexity and size, new kinds of defects are be-

coming dominant and test sets for existing fault sets are growing. Tests for additional

fault models like transition and bridging fault models are becoming necessary. All the

above result in the increase of data that is needed to be stored on a tester. However,

tester memory is costly and it may be impractical to increase tester memory.

To deal with this issue, test compression schemes were proposed. Various
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Figure 1.5: EDT Architecture

compression schemes reduce the amount of data needed to be stored on the tester.

Koneman [27] was the first to propose the idea of LFSR reseeding, which forms the

backbone for some of the commonly−used compression schemes.

Another advantage of test compression schemes is that a low−cost tester may

be used for testing instead of upgrading the tester. Test compression schemes usually
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consist of an on-chip decompressor that decompresses the encoded test stimuli values,

and a compactor that compacts the output response obtained.

Test data is highly compressible as typically only 1 to 5% of the bits in a test

have specified values. Specified values of test cubes are known to be highly correlated

due to structural relations in the circuit.

In this work, we use designs with Embedded Deterministic Test (EDT) schemes

[28] shown in Figure 1.5. EDT architecture consists of an on-chip decompressor

located between the external scan input ports and the internal scan chains, as well

as an onchip selective compactor inserted between the internal scan chains and the

external scan output ports. The test data decompressor is implemented by a ring

generator (optimized LFSR) and a phase shifter. The phase shifter is necessary

to drive a large number of scan chains and to reduce linear dependencies between

sequences entering the scan chains. In addition, the phase shifter design guarantees

balanced use of all memory elements in the ring generator. Scan cells are divided

evenly, if possible, into several shorter scan chains. For the purpose of producing the

desired output, the ring generator is continuously seeded with data. The ratio between

the inputs of the ring generator and the outputs of the phase shifter determines the

maximum compression possible.

1.8 Test Compaction

By test compaction or generation of compact tests, we mean the generation of

small or minimal−sized test sets to achieve the desired fault coverage. Two methods
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exist to generate minimal test sizes. The first approach is to use extra hardware

such as test points. Another method uses software techniques to produce minimal

test set sizes. In this work, we use software techniques. Several works have consid-

ered methods to generate compact (small) test sets . Generally, test−compaction

procedures use static compaction or dynamic compaction or a combination of both

[29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Static compaction procedures merge com-

patible test cubes generated to detect individual faults [32, 33, 34]. They also use

fault simulation of tests in test sets in different order(s) than the order in which the

tests were generated to drop some tests in the test set. Tests are dropped without

losing fault coverage. Dynamic compaction procedures use the unspecified values in

a test cube to detect additional faults [29, 30, 31, 32, 35]. Generating tests with a

minimal number of specified values help reduce the number of tests generated using

static and dynamic compaction procedures. Tests with a minimum number of spec-

ified values also facilitate encoding of test cubes for designs with test compression

logic, and hence aid generation of compact test sets for such designs.

A simple example of static compaction can be the case in which compatible

vectors are identified in a test set made up of incompletely specified vectors. For

example, vectors 11X1 and X101 are compatible. These two vectors can be combined

and replaced by a vector 1101.

Dynamic compaction, on the other hand, tries to intelligently fill in the un-

specified positions (Xs) in the test vectors such that more undetected faults can be

detected. For example, consider an AND gate with inputs A, B and output C. Stuck-
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at 1 fault at C can be detected by vector (A=0, B=X); however if we specify B=1, a

test for stuck-at 1 at C is also a test for stuck-at 1 at A.

1.9 Overview of the Thesis

In Chapter 3, we give details about test set compaction making judicious

ATPG decisions. We consider the generation of compact test sets for designs using

on-chip test compression logic. Even though the proposed procedure can be used for

designs without compression logic, the experiments we performed are all on designs

with test compression logic. We introduce two new controllability and observabil-

ity measures. Additionally, we introduce a way to randomly choose between the

two proposed measures. One of the new controllability/ observability measures is

meant to facilitate the detection of yet undetected faults similar to the Controllabil-

ity/ C-observability measures in SCOAP and these values are periodically updated.

However, the proposed measures for a line l differ from those of SCOAP as they take

into consideration the yet undetected faults in the fan-in cone and fan-out cones of l.

The main contributions of the completed work are:

• The new method to generate compact test sets is software−based and applicable

to designs with and without on-chip test compression logic.

• Two new controllability and observability measures are given to guide line jus-

tification and fault propagation steps of ATPGs.

• A method to randomly select between the above two measures, depending on

the logic level of the gates, is proposed.
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• The techniques presented can be used together with some of the earlier methods

such as delayed justification [39], and fault clustering [38].

• Experiments on several industrial designs show that the proposed techniques,

on average, reduce the number of test patterns by about 24%, relative to that

generated by a state−of−the−art commercial ATPG tool.

Later, we present a method to generate compact test sets for BIST ready

designs: we observed that to take full advantage of the X-bounding and test points

present in BIST ready designs generating compact (small) test sets, existing ATPGs

may have to be modified. ATPGs should not only generate tests that detect targeted

faults; while generating tests, one should also facilitate detection of yet undetected

faults to generate close to minimal test sets . Specifically, always utilizing test points

to derive tests may minimize specifications in tests, but usually will not facilitate

detection of yet undetected faults.

We propose a new ATPG guidance mechanism that balances between reduced

specifications in tests by using test points and bounded X-sources, and facilitating

detection of yet undetected faults by exploring higher specification options with com-

paratively lower probability. We also found that compact test generation for BIST

ready designs is influenced by the order in which faults are targeted, and we utilize

this observation. A new fault ordering and guidance approach is proposed for tran-

sition faults. Ordering scheme balances between fortuitous detection capability and

difficulty in detection, two reasons impacting test length to generate a fault order

which produces compact test sets. A new guidance approach is also proposed for
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transition faults.

In Chapter 4, we present a novel test data compression scheme to achieve

higher compression with low toggling activity named Isometric Compression Scheme

[7]. The new scheme deploys an on-chip power-aware test data decompressor, the cor-

responding test cube encoding method, and a compression-constrained ATPG that

allows loading scan chains with patterns having low−transition counts while encoding

a significant number of specified bits produced by ATPG in a compression-friendly

manner. As a result, the new solution offers very high compression ratios and pre-

serves all benefits of continuous flow compression. Moreover, the new scheme avoids

periods of elevated toggling in scan chains and reduces scan unload switching activity

due to unique test stimuli produced by the new technique, leading to a significantly

reduced power envelope for the entire circuit under test.

The rest of this thesis is divided as follows: In Chapter 2, we discuss the

previous work related to this thesis. In Chapter 3, we discuss the previous work

in the field of ATPG for high compression. Details on the fault−based compaction

mechanism we have proposed is discussed first. Later in Chapter 3, we present a

new compact test generation methodology for BIST ready designs developed by us

in Chapter 3. Isometric compression scheme is discussed in Chapter 4. We conclude

the thesis in Chapter 5.
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CHAPTER 2
PREVIOUS WORK

In this chapter, we the discuss previous work relevant to our work. First, we

will discuss ATPG for test generation.

2.1 ATPG Algorithms

In this section, we describe some of the basic terminologies that will be used

in this work.

Sensitized Path: A path starting at line l is said to be a sensitized path if

any value change on line l changes value of one or more PO/PPO.

Fault Detection: In a full scan circuit, a fault stuck-at-v is said to be detected

if line l can be activated to v̄ and a path exists between line l and PO/PPO such that

any change on line l also changes one of the specified PO/PPO.

Now we will define some more definitions commonly used by ATPG test gen-

eration programs. These are implication, justification, and fault effect propagation

procedures.

Implication: It is the procedure to find all the uniquely determined signals

under the current circuit state. Justification is responsible for selecting a way among

several possible ways to achieve desired values on signal lines. Fault effect propagation

takes care of selecting a path to propagate the fault effect and determining which

signal (along the path) should be set to what value.

Justification: The process by which the output of any gate is satisfied by values
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Figure 2.1: Example Circuit

at its input if many choices exist.

Propagation: Fault propagation deals with creating a sensitized path from

the fault location to at least one of the PO/PPO. A sensitized path is created if one

of the input is sensitized and other non-sensitized inputs are assigned non-controlling

values.

Example: The fault D s-a-0 needs to be tested. To activate the fault, we

require a value 1 on line D. Value 1 on A can be justified in two ways: either E or F

are assigned a value of 0 to create a sensitized path between ouput and fault location.

Inputs not on the sensitised path, i.e. C and I, are assigned non-controlling values.

Value 1 on C can be justified by chossing G or H to justify.

Implication is the process in which all the values can be uniquely assigned by
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a given assignment. If B is assigned a value of 0, we know the output of gate A

will be 0. Zero at B is said to imply a 0 on A. The above is an example of forward

implication. However, a 0 on B does not implies in a backwards direction, as now

three choices exist (not uniquely determined or implied) : 0 on D, C, or both.

2.1.1 D-Algorithm

D−algorithm was the first complete algorithm which searches the whole so-

lution space, given that no constraints on run-time exist. D−algorithm uses a five

alphabet algebra. The alphabets used are {0, 1, D, D̄,X} where D stands for signal

value 1 in good circuit, and 0 in faulty circuit. Similarly, D̄ stands for value 0 in good

circuit, and 1 in faulty circuit.

The generation of a test for a stuck-at fault, say line r stuck-at-a, a = 0 or 1,

starts by implying value ā on line r, where ā is the complement of a. This creates

a D or D̄ on line r using the D notation introduced in [9]. Next, the value on line

r is justified by assigning appropriate values to (some) input(s) of the gate, driving

line r, and the D or D̄ on line r is propagated towards the observed outputs through

selected intervening gates.

The line justification and propagation of Ds are facilitated by using two data

structures called J-frontier and D-frontier, respectively . The entries in the J-frontier

are output lines of gates whose outputs have specified values not yet implied by the

values of the inputs of the gates. The entries in the D-frontier are gates for which

some input(s) have D or D̄ values and the outputs are unspecified. Justifying the
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required value on a line r in the J-frontier is done by assigning a proper value to one

of the inputs of the gate driving r. Propagating D or D̄ to an observed output is

done by selecting a gate from the D-frontier and propagating the D or D̄ from its

input(s) to its output. The selection of a proper input to be assigned to justify a line

value in the J-frontier, and selecting a proper gate from the D-frontier to propagate

D or D̄, is important to obtain tests with a minimum number of specified values, to

obtain minimal size test sets and to reduce test generation times. In this work, we

will use an ATPG based on D-algorithm for test generation. However, the ATPG is

highly enhanced by the use of some other heuristics.

2.1.2 PODEM

It was proposed by Goel [10], and aims at using direct search instead of spec-

ifying values at internal nodes. PODEM (path oriented decision making) makes all

the decisions on the PI/PPI. The major highlights of PODEM are:

• Decisions are made only at primary input, as a result of this no−backward

implication is needed in the PODEM.

• Propagation decisions are made by choosing the gate on D-frontier which is

closer to the PO/PPO of the gate.

• X-path checking a new method to detect the existence of no solution is in-

troduced. It checks that an unspecified path, x-path, exists between current

D-frontier and PO’s. If no such path exists, than fault can not be propagated

using current D-frontier and a backtrack has to be performed.
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• Backtrace is used to justify lines; PI’s in the fan-in cone are iteratively assigned

values unless the value needed to be justified is satisfied.

• PODEM is a complete algorithm, like D-algorithm, and can generate a test

vector if one exists, given no constraint on run time.

• PODEM is approximately 2.5 times faster than D-algorithm, as reported by the

author in [10].

The main disadvantage of PODEM is that it has difficulty identifying redun-

dant faults as only assignments to PI are made.

2.1.3 FAN

FAN [40] was a successor of PODEM , and borrows some of the ideas of

PODEM and D-algorithm. The main highlights of the FAN are:

• Introduces a new concept called unique sensitization. When only one proro-

gation path exists, we should propagate the D-frontier through it and, at the

same time, justify the off-path inputs of gates on the propagation path to non

controlling values. It is similar to propagation−first methods described later.

• Does both forward and backward implications like D−algorithm, leading to fast

detection of conflicts or redundant faults.

• Unlike PODEM, FAN does not backtrace any J-frontier gates to primary inputs.

Instead, it stops at certain circuit lines called headlines. Headlines are the

output signals of fanout-free regions. Due to the fanoutfree nature of each cone,

all signals outside the cone that do not conflict with the headline assignment
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would never require a conflicting value assignment on the primary inputs of

the corresponding fanin cone. In other words, any value assignment on the

headline can always be justified by its fanin cone. Because each headline has a

corresponding fanin cone with several primary inputs, this allows the number

of decision points to be reduced.

• Multiple Backtrace: Since we now use unique sensitization, more than one

objective may be required to be satisfied simultaneously. Multiple backtrace

procedure handles this.

• Usually FAN results in up to 2-5X reduction in test generation time in compar-

ison to PODEM.

2.1.4 SOCRATES

The main points about Socrates [41] test generation algorithm are:

1. In Socrates [41], both forward and backward implications are used. Also, con-

trapositive implications are also learned. If we know that (a=0) implies (b=1)

then we know (b=0) implies(a=1) is also true.

2. While static implications are computed one time for the entire circuit, dynamic

implications are updated dynamically during the ATPG process.

3. At a given step in the ATPG process, some signals in the circuit would have

taken on values, including D or D.

4. This set of values may imply other signals which are currently unassigned to

necessary value assignments.
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5. In general, dynamic implications work locally around assigned signals to see if

any implication can be derived.

2.1.5 Recursive Learning

Learning specially dynamic learning is time consuming. Efficient ways were

needed especially for hard−to−detect faults. Recursive learning to generate test or

declare them redundant for hard−to−detect faults [42]. Recursive learning tries all

possible solutions to a problem and finds the intersection set of these solutions. The

intersection set must be true for a solution to exist. A complete set of pair-wise

implications could be computed. In order to keep the computational costs low, a

small recursion depth can be enforced in the recursive learning procedure.

2.1.6 SPOP

Single path oriented fault effect propagation (SPOP) [43] is an idea different

from traditional ATPGs which consider propagation and justification simultaneously.

In SPOP, we first built a sensitized path; after a sensitized path is built, all justi-

fied lines are subsequently justified. Creating a sensitized path before justification

accelerates the identification of redundant fault.

2.2 Test Set Compaction

Compaction techniques can be divided into two sub−categories: dynamic and

static compaction. Dynamic compaction technique modifies the ATPG procedure

so that every test pattern generated is incrementally specified to detect more unde-
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tected faults [29, 30, 31, 32, 35]. Static compaction, however, deals with a complete

test set; any generated test set is reordered to modify or drop test patterns that

are redundant [32, 33, 34]. Test generation process is not impacted by static com-

paction. Most of the state−of−the art techniques that result in the smallest test

set sizes use a combined approach of static and dynamic compaction. In combined

approaches, generally a dynamic compaction procedure is applied first, followed by a

static compaction procedure.

Next, we describe some of the previous work in the field of compaction. We

discuss test set compaction for scan designs and stuck-at-fault models.

2.2.1 Compaction Approach by Goel and Rosales

Authors in [29] were the first to identify the benefits of reducing the test set

size by using compaction procedures. Two methods - static and dynamic compaction

- were used in this work. In dynamic compaction, a test vector is generated for a

fault f . The remaining undetected faults are targeted incrementally by specifying the

non−specified positions of the current test vector, where the current test vector is the

test vector originally generated for fault f and other faults which were successfully

detected by incrementally specifying test vector for f . New faults for given test

vectors are targeted until all PIs are specified, or maximum threshold or possibility

of success is low. In this work, static and dynamic compaction were not combined

and were treated as separate methods.

During static compaction tests for all faults in the test set are generated and
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the compatible test vectors are subsequently merged, therefore run time for static

compaction was very high.

In the end of the paper, the authors concluded that dynamic compaction

procedures are more effective in generating compact test sets in comparison to static

compaction procedures. Static compaction procedures take more memory and time

as test vectors for all faults in the test sets were targeted.

2.2.2 COMPACTEST

Compactest was proposed in [30] and gives one of the best results. Compactest

combines the following new concepts to attain a low test set compact test.

• Fault ordering has an impact on test pattern count. Two faults are said to

be independent if they do not have a common test vector that detects both of

them; example, any stuck-at 1 and stuck-at 0 faults on any input of an AND

gate. Independent set fault lists for each FFR are generated and formed into

groups. Groups of faults are arranged according to the number of faults in the

group. Independent set fault list in an FFR are generated using an efficient

algorithm; the largest independent fault list (for FFR’s) is targeted first.

• Potential compatible fault list (faults which can be detected by the same vector)

is generated and used as an input fault list for dynamic compaction procedure.

• A method named maximal compaction was introduced, which starts with a

generated test vector. If any specified PI is non-essential then after inverting

the value of that PI - if the targeted fault will still be detected by the modified
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test vector. Specified position at the PI is not essential and can be changed to

X. Commonly, this method is mentioned as relaxation in test literature. Even

though it is not guaranteed to be a test, the probability of a relaxed test not

being able to detect a previously detected fault is very small.

• Rotating Backtrace: Usually, testability measures are used to guide backtrace

decisions. Testability measures are computed once and used for the whole test

generation flow. Usually, testability measures guide ATPG toward the easiest

possible option. This leads to ATPG being guided toward the same set of nodes,

or searching the same search space multiple times. Compaction suffers as ATPG

is less likely to be guided toward non−targeted faults. A good way is to rotate

between the possible options to facilitate the detection of undetected faults.

2.2.3 ROTCO

Reverse Order Test COmpaction (ROTCO) [44] is a static compaction proce-

dure. Its input is a complete test set generated by any other ATPG tool. ROTCO

works with faults that were detected only once during the test generation flow. Usu-

ally, a lot of inputs remain unspecified even after a complete test set generation. It

might be possible to specify these unspecified locations so that a test is generated for

some other faults other than those currently detected by the current test vector. If

a fault f is detected only once during test set, a test vector Ti specific to that fault

is required in the test set. If by incrementally specifying some other test vector Tj

detects fault f , and no fault exists that is only detected by Ti in the complete test
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set, Ti is redundant and can be removed from the test set.

The patterns were modified in the reverse order to that of test set generation.

This method can be applied even after any dynamic compaction approaches.

2.2.4 COMPACT

Compact is a very simple and efficient test generation procedure and has been

widely used [31]. The fundamental difference between this and other procedures is,

instead of trying to generate a test for a fault by a same vector, it generates vectors

individually for faults and merges them Compatible faults usually have similar vectors

that can be merged together. The overall approach is described below:

1. Generate a test for a set of faults from yet undetected faults. Store it in a buffer.

2. Go to the first test vector Ti in the buffer for fault f ; if it is compatible to any

other vectors in the buffer, merge the other vectors to T1.

3. Fault simulate T1 after merging and drop the faults that are detected by T1.

Remove the vectors corresponding to these faults if one exists in the buffer.

4. If there are undetected faults left, go to step 1.

The main advantage of COMPACT is that the procedure is fast and yet pro-

duces reasonably good results.

2.2.5 CODEM

CODEM (Compaction Oriented Decision Making) proposed in [36], was de-

veloped for industrial circuits. The main ideas of the approach are as follows:

• Modifies decision making process for test generation to facilitate the detection
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of a present set of undetected faults. Both propagation and justification deci-

sions are modified by using a new dynamic testability measure instead of static

SCOAP based measures.

• Testability measures are changed so that ATPG is guided in a manner that

test vectors for undetected faults are generated by incrementally specifying the

unspecified PIs of the test generated for the current targeted fault.

• Testability measures are updated after the generation of every test pattern for

a fault, followed by dynamic compaction.

• However, the approach results in only 6% reduction in test length.

• The approach can easily be applied to large industrial circuits, as comparable

overheads in terms of memory and run time are low.

• Also, redundant faults were identified in the start of the ATPG process and

are used to prevent ATPG from re-targeting redundant faults again, leading to

wasted ATPG effort.

2.2.6 Double Detection and Two-by One

Double detection and Two by One techniques were proposed in [32]. The

improvement was done over COMPACTEST.

2.2.6.1 Double Detection

Highlights of the double detection procedure are:

1. Fault Ordering: Fault ordering is based on an independent set of faults, with

faults in FFR with the largest number of independent faults first. The only
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change is that the target list is updated dynamically, based on the current set

of undetected faults.

2. Changes to Rotatory Backtrace: Rotating backtrace should be used for different

vectors, while generating a test for the same vector, it should not be used.

3. Double Detection: A test set is generated so that every fault is detected a

minimum of two times. Fault simulation is used, and tests that detect essential

faults (faults not detected by just one test vector in test set) are simulated

first. All the test vectors that do not detect any new faults are dropped. Fault

simulation is repeated until every vector contains one essential fault.

2.2.6.2 Two-by-One Approach

Two-by-One is a static compaction technique and can be used after generation

of any test set. The method works as follows:

• First we extract the essential faults of each test vector.

• In the second step, all independent fault sets are identified. If a fault pair is

not independent, two separate vectors are required to generate tests for them.

• If two faults in a pair are not independent, a new test vector is generated that

detects all essential faults detected by both vectors. If such a vector is generated,

replace both vectors with this new test vector.

• If any such pair of faults still exist, repeat the procedure for them.

Experimental results showed that the combination of double detection, two

by one, improved fault ordering, and improved backtrace procedure gives shorter test
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length than if each of these procedures were used individually.

2.2.7 Set Cover Method

This paper maps the test compaction problem to a set cover problem [45]. In

this case, the problem was mapped to airline scheduling problems. The problem can

be thought of as the following:

• Suppose test vectors are sets and faults are elements in a set.

• Set cover problem is defined as a minimum number of sets (test vectors) that

are required to cover all elements (faults).

• The problem is known to be an NP Complete problem, so no good solution

exists. The only hope is to use an approximate solution.

• The problem was mapped to airline scheduling problems, and an LP relaxation

based solution was proposed.

• Since the number of faults is huge, only a given number of faults are considered

once and a solution is generated for them.

The solution resulted in a good test length, and can even reduces the test length of

some previously known procedures.

2.2.8 Mintest

The Mintest works on two techniques [35]: essential fault removal (EFR) and

redundant vector elemination (RVE). In EFR, a test vector is taken and all essential

faults are assigned to other vectors, by incrementally specifying them. Even if all the

essential faults can not be assigned to other vectors the status of vectors are preserved
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and the possibility of removal is increased, as some vectors that are redundant may be

left with fewer faults after each iteration. Fewer essential faults may lead to increased

probability of the essential faults being assigned to other vectors.

2.2.9 Forward Looking Fault Simulation

Reverse-order fault simulation (ROFS) was found to be efficient in quickly

reducing the size of a test set. However, with only ROFS, it is possible for some

redundant vectors that don’t contain any essential fault to be retained. Prior to

using the technique [46], the original test set is simulated and each fault is associated

with an index which links to the vector that first detects the fault. Next, the test set

is re-simulated in reverse order. A fault is dropped from the fault list as soon as it is

detected by a vector. A vector i is dropped in this process if either it detects no new

fault, or no fault it detects has index i.

If no fault detected by i has index i, that means there is at least another vector

that detects the fault that will be simulated in the future. Hence, there is no need

to keep vector i since all faults it detects are going to be detected by later vectors.

Experimental results showed that using forward-looking fault simulation yields a more

compact test set than using reverse-order fault simulation.

2.2.10 Pattern Generation for Embedded BIST

In this work [47] the authors used a hybrid BIST scheme where random pat-

terns are applied first, and then patterns are generated for a BIST scheme having

constraints on encoding. Only a given number of specified positions can be encoded
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in every cycle. The ATPG has some interesting highlights :

• ATPG was guided based on undetected faults.

• If no undetected fault detection is facilitated by ATPG, a decision leading to

the minimum number of specification is used.

• If D-frontier has a controlling value for gate on propagation path, any faults on

the other inputs of the gate are not observable and no faults in the fan-in of

these input can be detected, leading to a minimum specification decision.

• Both static and dynamic compaction schemes were used to generate compact

tests for embedded BIST.

2.2.11 Tests With Large Number of Unspecified Bits

In this work a dynamic and static compaction scheme was proposed for circuits

with a large number of unspecified bits.

• Static Compaction: A given test vector is considered, and specified bits are

relaxed so that all essential faults detected by the compaction schemes are

detected even after relaxation and fewer specified bits.

• Dynamic Compaction: A fault is considered compatible if a single test detects

a fault, possibly with less number of specified bits. A compatibility graph is

constructed so that the vertices’s in the graph consists of fault, and the edge

weight represents the number of specified bits if two faults are compatible. At

first a few faults are targeted and compatibility relations are explored by merg-

ing compatible faults together if a test vector detecting both of them with a low
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number of specifications exists. In later operations, more faults are considered.

2.2.12 Delayed Justification

Delayed justification approach was proposed in [39]; it has long been known

that headlines [40] can be justified later during the test generation process. The same

concept is applied to compression with some modifications:

• Headlines are identified not only statically but dynamically, depending on the

circuit node values; this leads to an increase in the number of headlines.

• A fanout is allowed in the fan-in cone of the headline, resulting in the possibility

that conflicting values can be assigned. However, as number headlines with

conflicting values assigned to them are low in comparison to the total number

of headline candidates available after this relaxation.

• Headlines are justified in the end of the test generation process, giving more

opportunity to improve encoding by using available free variables.

2.2.13 Compact Test Generation Based on Compatible Faults

In this work [37, 38], compatible fault clusters are formed based on necessary

assignments. If two faults have non-conflicting necessary assignments, they are said

to be compatible.

First, a group CA is formed of all necessary assignments required to test a

given cluster of compatible faults NA. While targeting a fault, effort is made to honor

assignments in corresponding CA. ATPG justification and propagation decisions are

made so that assignments in CA are not conflicted.
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Main disadvantage of this approach results from two phased ATPG, once for

learning followed by ATPG for actual test generation.

2.2.14 QBF Based Test Pattern Generation

Recently, a quantified boolean formula (QBF) based on compact test gen-

eration approaches was proposed to generate provably optimal compact tests[48].

Similar to SAT, required test properties were mapped to a logic formula. For each

input, candidate a multiplexer was encoded to dynamically un-specify the input. An-

other approach to generate accurate test patterns in the presence of the unknown was

given in [49]. This approach removes the pessimism of conventional fault simulation

algorithm and can accurately classify faults as untestable or testable.

2.3 Compression to Achieve Low Toggling and Reduced Data Volume

Power dissipation in the circuits can be categorized into two types: static power

dissipation and dynamic power dissipation. In static power dissipation, the power is

dissipated by a gate when it is inactive. Static power dissipation is currently negligible

[3]. Dynamic power dissipation, on the other hand, is due to current requirements, as

a result of the charging and discharging of inherent load capacitances in CMOS. The

power dissipation is directly proportional to the load capacitances which are charged

or discharged at every toggle. Hence, reducing toggle is an important requirement for

low power testing.

In this chapter, we give the overview of the proposed future research works.

Compression is becoming a mainstay and is typically added to reduce test data volume
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during a scan test. It is known that a scan-chain test might have a switching rate

many times higher than a functional test. Any typical scan-pattern may result in

power requirements that are above normal functional mode requirements [50]. High

toggling during tests may also result in over-stressing, reliability failures, and may

even result in yield loss [3]. In this work, we propose to develop new methods to

reduce shift power during test in compression environment.

The problem of reducing power dissipation for scan-test can be divided into

two main categories: reducing shift power and reduction of capture power, power

dissipated during the scanning out of the test response. Power during scan testing

has been addressed by partitioning [51, 52], test scheduling [53], reordering of scan-

chains [54, 55], and filling of unspecified positions [56, 57].

2.3.1 Test Vector Filling Techniques

Some earlier methods try to reduce shift power by assigning a constant value

to unspecified positions. To address capture power, methods like preferred fill try to

reduce hamming distance between captured values and applied test vectors. Specifi-

cally, preferred fill uses a technique based on signal probabilities. Inputs are assigned

equi-probable probabilities for 0 and 1.

Preferred fill calculates the signal probabilities of each PPO. If the signal

probability of a scan-cell capturing 1 is high, a 1 is assigned to corresponding PPI if

it is unspecified, or else a 0 is assigned [56]. Another method named JP fill uses a

signal probability and justification based method to reduce power supply noise.
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2.3.2 Scan Cell Reordering

A scan cell reordering technique is proposed in [54, 55] to reduce switching

activity, and hence power dissipation in scan design by changing the order of scan

cells in each scan chains. The best order of cells is the one that gives the best

compromise between reducing the transitions in the scan cells during both scanning

in test patterns and scanning out captured responses.

2.3.3 Clock Gating to Reduce Capture Power

Clock gating logic is common in modern designs to reduce dynamic power. In

test mode, scan-enable signals override the clock gate enable signal, which leads to

successful scan-shift operations [58, 3]. However, in capture mode clock gating logic

can be used to disable capture by some scan-cells as during the capture cycle, the

scan−enable is inactive and the clock gate is controlled from its functional enable.

The the functional enable is judiciously controlled by an ATPG capture power and

can be reduced without impacting the ability to capture fault effects. Figure 2.2

shows a typical clock gating circuit.

2.3.4 Previous Work In Low Power Compression

Some of the above techniques like design partitioning and test scheduling can

be used for low power compression. Some popular low−power test methods to reduce

power in compression environment are addressed in [59, 60, 61, 62] :

Reseeding to reduce toggle rates, authors in [63] propose a method that reduces

the number of transitions and specified bits at the same time.
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Figure 2.2: A typical clock gating circuit

We use EDT compression environment in this work [28]. A low power EDT

compression scheme is shown in Figure 2.3. Typically, the number of specified scan-

cells is around 1% of the total scan cell. Rest scan cells are filled at random using

the decompressor, leading to unusually high switching activity. Due to such a low

percentage of specified scan cells, only a few scan-chains have specified scan-cells in it.

Scan-chains without any specified scan-cells can be assigned a constant value either

0 or 1. Assigning a constant value will reduce the number of transitions for that

scan-cell. However, it is important to note that since all specified scan-cells contain

specified values necessary to detect a fault, all faults targeted by the pattern are

detected with this low transition pattern.

The overall scheme shown in Figure 2.4 works as following: input channels

provide the compressed input data to the decompressor. Input channels are also

routed to control the register which drives an XOR tree, which in turn drives the

AND (OR) network at the input of scan-chains. If a 1 exists at the input of AND

gate, scan-chains are directly driven by a decompressor; else in case of 0, a constant
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Figure 2.3: Low Power EDT

value of 0 is shifted in the corresponding scan chain.

We now define two terms which will be used frequently in this work:

Scan Slice: All the scan cells that are shifted in the same scan cycle are referred

to be of the same scan-slice.

Free Variable: Every bit stored at the tester is called free variable as it can be

assigned either 0 or 1.

Due to the low number of specifications for a test cube, it is possible that for a

few scan slices – no new specification is required, or requirements for test generation

are satisfied even if the same data is supplied to scan chains for a given k number of
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Figure 2.4: Decompressor (A) Original (B) With shadow register

shift cycles. The above mentioned approach further reduces transition count and thus

reduces power during the test. New and old decompressor hardware is shown in Figure

2.4 [61]. However, this scheme requires some hardware changes; a new mechanism was

added so that ring-generator changes state and accept new free variables which can be

used for the encoding of any specifications after hold cycles in which no free variables

were consumed. The above was achieved by adding a shadow register between the

ring generator and the phase shifter; the same data is provided by the ring generator

for k consecutive cycles if the shadow register hold control input is set to high, or else

if hold control input is set to 0, a new state from the ring generator is fed to phase

the shifter. The shadow register is transparent for a hold register set to 0.
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In every shift cycle, an input channel is used to control the shadow register

directly from the input channels. If a given control bit is set to 1, then the shadow

register updates its state before the ring generator reaches its next state. Instead

of the control channel, one can use the decompressor input channels to deliver the

control information merged with the seed variables. The main advantage of the above

scheme is that it can reduce toggle in scan-chains that are fed using decompressor

directly, thus reducing toggle activity significantly.

The above low power compression solution described in [61], however, suffers

from the following drawbacks:

• One input channel is used for all cycles to control the hold register, leading to a

reduced number of free variables, those are available for encoding specified scan

cells.

• High additional hardware cost of one gate per scan-chain, appropriate XOR-

based controlling mechanisms and control registers are needed.

• High number of initialization cycles, as in the start we load control registers

that control the AND gates which, in turn, decide if a scan-chain is loaded by

constant values or decompressor.

We will address all the above disadvantages of the approach proposed, as well

as improve compression by using a new hardware architecture to provide hold signal

to the shadow register using an template register; the new architecture is supported

by appropriate changes to ATPG flow.
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CHAPTER 3
GENERATION OF COMPACT TEST SETS

In this chapter, we present our work published in [5, 6]. Typical methods to

select proper inputs for line justification and D propagation use controllability and

observability measures, or randomly select with equal probability, one of the unspec-

ified inputs of gate driving lines on the J-frontier. During D-propagation randomly

select with equal probability one of the gates from the D-frontier [38].

In Table 3.1, we describe equations to calculate SCOAP measures commonly

used to make ATPG decisions for various gate types [1]. SCOAP controllability

measures are calculated in forward levelized trace from PI/PPI toward PO/PPO.

Similarly, SCOAP observeability measures are calculated in a backward levelized

trace from PO/PPO towards PI/PPI. C0 or controllability of 0 for any line is an

estimate of the minimum number of inputs that need to be specified to control line l.

Observability of a line l is a measure of the number of inputs that need to be specified

to propagate a fault effect on line l to a PO/PPO.

Table 3.1: Calculation SCOAP controllability and observability values.

Gate Type Controllability 0 Controllability 1 Observability
OR C0

C = C0
A + C0

B C1
C = min(C1

A, C1
B) OA(B) = OC + C0

B(A)

NOR C0
C = min(C1

A, C1
B) C1

C = C0
A + C0

B OA(B) = OC + C0
B(A)

AND C0
C = min(C0

A, C0
B) C1

C = C0
A + C0

B OA(B) = OC + C1
B(A)

NAND C0
C = C0

A + C0
B C1

C = min(C0
A, C0

B) OA(B) = OC + C1
B(A)

INV C0
C = C1

A C1
C = C0

A OA = OC

BUF C0
C = C0

A C1
C = C1

A OA = OC

SL 1 1 0



www.manaraa.com

46

Table 3.2: Circuit Properties

CKT Size FF Num of Longest Input Output Decompressor
Num Chains Chain Channels Channels Size

D1 1.1M 75K 382 190 2 5 32
D2 3.3M 73K 244 300 3 3 32
D3 1.3M 52K 209 250 3 3 32
D4 107K 1640 15 115 1 1 16
D5 500K 28K 400 71 4 8 28
D6 400K 41K 400 104 2 5 22
D7 2.2M 167K 1200 142 16 16 65
D8 1.2M 75K 400 202 2 5 32
D9 1.3M 68K 658 104 3 6 64

Decisions based on SCOAP measures are known to result in test cubes with a

minimum number of specified values. It has been observed that random choice based

decisions (random decisions for short) most often yield smaller test sets for industrial

designs in comparison to test generated using SCOAP based decisions.

In Table 3.2, we give the gate count (size), number of flip-flops (FF), number

of chains and other design properties for nine industrial circuits. Next, in Table 3.3

we give the fault coverage (FC) with the ATPG tool default value for the backtrack

limit and the size of test sets referred to as test length (TL), using random decisions

Table 3.3: Test length Random and SCOAP.

SCOAP based ATPG Random Decision ATPG
CKT FC TL FC TL
D1 96.71 15040 96.71 18881
D2 93.31 5696 93.31 7012
D3 94.56 20032 94.56 23716
D4 95.31 4992 95.31 5406
D5 99.26 7938 99.26 7598
D6 98.63 2048 98.63 2406
D7 91 2496 91 2955
D8 97.04 8064 97.04 9636
D9 95.94 9359 95.94 11446
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and SCOAP measures. SCOAP based decisions, on average, results in a 18% increase

in test set sizes in comparison to a test set size obtained by a random decision ATPG.

3.1 Fault Based ATPG Decisions

3.1.1 Overview of the proposed method for line justification and D propagation

The proposed method to generate compact test sets uses three new techniques.

The first one marks each gate in the design with probability p as described in Section

3.1.2. Gates are marked once in a preprocessing step. The line justification and D

propagation decisions at a marked gate are made using a static measure described

in the next section. The line justification and D propagation decisions at unmarked

gates are made using a dynamic measure described in Section 3.1.3. The measure

described in the Section 3.1.4 is called static, as it is computed once for each line in

the circuit. Dynamic measure is updated periodically during test generation. Next,

we describe how the gates in the design are marked.

3.1.2 Procedure to mark gates

Gates in the design are marked for line justification decisions and D propaga-

tion decisions separately. Gates are marked for line justification with a probability

based on their level counted from inputs (primary and pseudo-primary), which we

call forward level. Gates are marked for D propagation based on their level counted

from circuit outputs (primary outputs and pseudo-primary outputs), which we call

backwards level. Note that all gates at a level are marked with the same probability.

In a preprocessing step, each gate at level l is marked with probability p according to
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Table 3.4: Probability p calculation

forward(backwards) level l p
l < 20 0.1

20 ≤ l < 100 l/100
l ≥ 100 1

Table 3.4. The intuition behind the marking procedure is described next.

Both the static and dynamic measures described later are similar to control-

lability and observability measures typically used in ATPG as guidance to solve line

justification and D propagation. Similar to SCOAP based measures [64], the static

measures we use are effective in leading to a minimal number of specified values in

test cubes and the dynamic measures facilitate detection of yet undetected but not

targeted by the current test being developed. The logic level based random selection

between static and dynamic measures prefers static measures if the decision point is

at a higher level. The intuition behind this strategy is the follows: if a line value is to

be set to satisfy a line justification requirement at a higher forward level, the fan-in

cone of the line tends to be large and can also involve many circuit inputs leading

to many specified values in test cubes unless the proposed static measure is used to

guide the selection of input to solve the line justification problem using minimal spec-

ification. Similarly, for D propagation through a gate at a higher backwards level,

the D has to be propagated through many levels of gates whose off-path inputs have

to be justified to non-controlling values and, in this case, the static measures guide

D propagation through gates closer to the observed outputs.
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3.1.3 The Proposed Static Measure

We use SCOAP [1, 64] to determine the static measures to be assigned to

each circuit line. For each line l, we first compute 0 and 1 controllability, C0(l)

and C1(l), and observability O(l) using the procedure in [1] which is slightly different

than the original SCOAP procedure in [64]. We then compute the new static measures

SJ0(l), SJ1(l) and SP (l) as: SJ0(l) = 1/C0(l)3, SJ1(l) = 1/C1(l)3 and SP (l) =

1/(1 + O(l))3. That is, the new static measures are the inverse of the cube of the

classical SCOAP measures. In computing SP (l) we add a 1 to O(l) to avoid dividing

by 0 when O(l) is zero. The names for the static measures are chosen based on

the following rationale: controllability measures are used in ATPG’s to guide line

justification decisions, and hence the static measures computed from controllability

values are called SJ0 and SJ1, where S stands for static and J stands for justification.

Similarly, the static measure computed from observability is called SP , where P

stands for propagation of Ds done using these measures.

In Figure 3.1 we give an example to illustrate the computation of the static

measures using the ISCAS85 benchmark circuit C17. In Figure 3.1, we give the values

of C0(l) and C1(l) as pairs (C0(l), C1(l)) for each line and the corresponding SJ0(l)

and SJ1(l) values as pairs [SJ0(l), SJ1(l)]. In Figure 3.2 we give O(l) values as

(O(l)) and SP (l) values as [SP (l)] for each line.

The reason for the inverse cubic measures described above is the following:

instead of using controllability and observability measures directly to guide line jus-

tification and D propagation decisions, as discussed later, we use a weighted random
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Figure 3.1: SJ0 and SJ1 measures.
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Figure 3.2: SP measures
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decision based on controllability and observability measures. This allows us to bal-

ance between deterministic decisions as in the case of using the SCOAP measures

directly, which typically yield minimally specified test cubes and the pure random

decisions that we showed earlier lead to smaller test sets. As the experimental results

presented later show, this balance is effective in reducing test set sizes. Additionally,

we found that instead of using SCOAP measures directly in making the weighted

random decisions for line justification and D propagation, using a function of the

SCOAP measure leads to better control for balancing between deterministic and ran-

dom decisions. The inverse cubic measures were found to provide this balance.

3.1.4 The Proposed Dynamic Measures

We compute the proposed dynamic measures for line justification and D prop-

agation for every circuit line l afresh after generation of k tests, and these measures

are meant to facilitate the detection of yet undetected faults. In our implementation,

we used k=64.

3.1.4.1 Dynamic Measure for Guiding Line Justification (DMJ)

DMJ has two values for each line, DMJ1 and DMJ0, which are computed

iteratively from circuit inputs to circuit outputs. DMJ1 (DMJ0) for a line l is an

estimation of the number of faults in the fan-out free region (FFR) driving line l,

which are sensitized through line l with a 1 (0) on line l in the fault-free circuit. DMJ

values are calculated using the algorithm given in Figure 3.3. Only the undetected

faults in the FFR driving l influence DMJ values of line l. Both DMJ values for stems
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Require: Set DMJ1 DMJ0 to 0 for all lines
for Forward trace from PI/PPI towards PPO in a levelized manner
do

if If output of gate i has a stuck − a− 1 fault then
DMJ i0 = DMJ i0 + 1

end if
if If output of gate i has a stuck − a− 0 fault then
DMJ i1 = DMJ i1 + 1

end if
for every input j to gate i feed by stem do

if input j to gate i feed by stem then
if j has a stuck-at-1 fault and i is non-inverting gate or j has
a stuck-at-0 fault and i is inverting gate then
DMJ i0 = DMJ i0 + 1

end if
if j has a stuck-at-0 fault and i is non-inverting gate or j has
a stuck-at-1 fault and i is inverting gate then
DMJ i1 = DMJ i1 + 1

end if
end if
if gate i is non-inverting then
DMJ i1 = DMJ i1 + DMJ j1

DMJ i0 = DMJ i0 + DMJ j0

end if
if gate i is inverting then
DMJ i1 = DMJ i1 + DMJ j0

DMJ i0 = DMJ i0 + DMJ j1

end if
end for
If stem DMJ i1 = 0, DMJ i0 = 0

end for

Figure 3.3: Calculation of DMJ1 and DMJ0.
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Figure 3.4: Calculation of DMJ values

are set to 0. In Figure 3.4, we give DMJ values for each line l in ISCAS85 benchmark

circuit c17 as (DMJ0, DMJ1), assuming that both stuck-at-1 and stuck-at-0 faults

on all lines of the circuit are yet undetected.

3.1.4.2 Dynamic Measure for D Propagation

Similar to the computation of observability measure of SCOAP, which is com-

puted using controllability values, the proposed dynamic measures for propagation

are calculated after calculating the dynamic measures for justification given above.

However, unlike SCOAP observability, DMP have two separate values: one for 0

and one for 1. DMP 0 (DMP 1) for a line l is an estimation of the number of yet

undetected faults whose propagation is facilitated by 0(1) on line l in the fault free

circuit.

We need the following definitions to explain things further:
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Require: Set DMP 0 DMP 1 to 0 for all lines
for Backward trace from PO/PPO towards PPI in a levelized manner do

if gate i is a PPO/PO then
If gate i a stuck−at−0 fault DMP i1 = DMP i1 + 1
If gate i a stuck−at−1 fault DMP i0 = DMP i0 + 1

else
for input’s j of gate i do

if j has a stuck−at fault then
Add 1 to DMP j1 for stuck−at−0 and 1 to DMP j0 for stuck−at−1

end if
for v ∈ {0, 1} do

if value v at j uniquely determines value for i then
if v is 1 DMP j1 = DMP j1 + DMJ j1

if v is 0 DMP j1 = DMP j1 + DMJ j1

else
Collect needed inputs other than j for any fault effect to propagate to
i, store respective lines in array L
for every line l in array L do

if v = 1 DMP j1 = DMP j1 + DMJl1 + DMJl1
else DMP j0 = DMP j0 + DMJl1 + DMJl0

end for
end if

end for

if i is inverting gate then
DMP j0 = DMP i1 + DMJ j0,
DMP j1 = DMP i0 + DMJ j1

else
DMP j1 = DMP i1 + DMJ j1 ,
DMP j0 = DMP i0 + DMJ j0

end if
end for

end if
If stem add all values of for branches

end for

Figure 3.5: Calculation of DMP 1 and DMP 0.
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Figure 3.6: Calculation of DMP values

On Path Inputs: Inputs to a gate on the D-frontier with a D or D values.

Off Path Inputs: Inputs of a gate on the D-frontier whose current values are

not D or D.

For all gates along a fault propagation path if on-path inputs of a gate have a

non-controlling fault-free machine value, all the undetected faults in the FFRs driving

the off-path and the on-path inputs are facilitated by the fault-free value on the on-

path input. However, if the fault-free value on the on-path input is a controlling

value, all the undetected faults in the FFRs driving the off-path inputs are blocked

by the on-path fault-free value. Therefore, depending on the on-path fault-free value,

DMP values are different for 0 and 1.

The algorithm given in Figure 3.5 is used to calculate DMP values. In Figure

3.6, we give values for DMP 0 and DMP 1 in pairs as (DMP 0, DMP 1) for ISCAS85

benchmark circuit c17, assuming that both the stuck-at-1 and stuck-at-0 faults on all
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lines are yet undetected.

3.1.5 Line Justification Decisions

Line justification decisions justify a required value at a line l in the J-frontier

by assigning a controlling value to a selected input of the gate driving line l, which

currently has an unspecified value. If the gate is marked, the decision is based on

static justification measures SJ0 or SJ1 for all the unspecified inputs ip1, ..., ipk of

the gate. We make a weighted random decision based on the probabilities computed

from SJ0 or SJ1 values of inputs ip1, ..., ipk. If the controlling input of the gate is

v ∈ (0, 1), then the probability of picking input ipj to justify the line value is:

p(ipj) = SJv(ipj)/
∑

i
i=1...kSJv(ipi)

As an example, consider a 3 input AND gate which is marked, and we need to

justify its output to be 0 by implying a 0 on one of its three inputs. Let the inputs

of the gate be a, b, and c and the static justification values, SJ0(a), SJ0(b), and

SJ0(c) be 2, 4, and 8, respectively. Then the probability of selection of a, b, or c is

p(a)=2/14, p(b)=4/14, and p(c)=8/14.

Instead of using the SJ measures directly to make decisions, we use a weighted

random decision which have the following advantages: It causes decisions to typically

yield minimum specifications of inputs with a very high probability. However, a degree

of randomness is added by assigning lower probability of selection to other inputs with

lower SJ measures. Secondly, in the case of two inputs having very similar SJ values

close to minimum of values at a gate, SJ based decision will always choose the same
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one of the two possibilities. However, weighted random approach will assign similar

probabilities for selections of either two.

Given a gate g on D-frontier, inputs ip1, ..., ipr are on-path inputs and have a

D or D on them, if any on-path input ip1, ....., ipr has a controlling value in the fault

free circuit, undetected faults in the FFRs in the fan-in cone of the off-path inputs

cannot be detected by the test under generation. Gates in such fan-in cones are

called blocked. If a gate is blocked, all gates in the same FFR in the fan-in cone are

also blocked. Any decisions made on blocked gates are made using static testability

measures SJ1 or SJ0 to minimize the number of specified values in the test.

3.1.5.1 Line Justification Decisions Using Dynamic Measures

Dynamic guidance measures DMJ are used for justification decisions at a gate

in the J-frontier if the gate is un-marked.

Line justification decision based on dynamic measures DMJ1/DMJ0, for all

the unspecified inputs ip1, ..., ipk of a gate on the J-frontier is used to select an input

with probability computation similar to the case of using static measures discussed

above. If the controlling value of the gate on the J-frontier is v ∈ (0, 1):

p(ipj) = DMJv(ipj)/
∑

i
i=1...kDMJv(ipi)

3.1.6 D Propagation Decisions

D propagation decisions are required when we have multiple gates on the D-

frontier and one of them is selected using a given criteria to propagate a D or D̄ to

the output of the selected D frontier gate by implying non-controlling values on the
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unspecified inputs of the selected gate. Decisions are divided into two parts: when at

least one of the gates on the D-frontier with multiple gates is marked, and when no

gate on the D-frontier with multiple gates is marked.

We first start with analyzing if any gate on the D-frontier is marked and,

in case it is, we pick a gate among the marked gates using the proposed static D-

propagation measures SP (l) for the gate picked. If the marked gates on D-frontier are

g1, ..., gk, we make a weighted random decision based on the probabilities computed

from SP values of g1, ..., gk. The probability of picking gate gj to propagate a D is:

p(gj) = SP (gj)/
∑

i
i=1...kSP (gi)

In the case no gate on the D-frontier is marked, then we use the dynamic

D-propagation measures, DMP , to compute the probability of selecting a gate. If

g1, ..., gk are the D-frontier gates for which a D or D propagates to output if all

un-specified inputs of the gate are assigned a non-controlling value, assign an array

A1, ...., Ak so that if input gi is D, Ai = DMP1(i) or else Ai = DMP0(i). The

probability of picking gate gj for propagation is:

p(gj) = Aj/
∑

i
i=1...kAi

3.2 Generating Compact Test Sets for BIST Ready Designs

In this section, we describe the next part of our work on generating compact

tests for BIST ready designs accepted in [6]. Test data compression schemes usually

do not insert test points or X-bounding logic [28, 65, 66], and deterministic tests are

generated for all detectable faults [28]. Xs in test response are partially suppressed by
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using X-masking logic to mask some or all Xs at scan-chain outputs [28]. Since the bits

to mask Xs in this manner need to be encoded together with the specified bits of test

cubes for BIST ready designs, X-bounding and test points used can have a significant

impact on test data compression. Post X-bounding, no input data is required for X-

masking as no Xs exist in test responses. X-bounding, therefore, impacts both input

and output test data volumes. Test points reduce the number of specifications in tests

[24, 22], as well as facilitate higher test response compaction. By specifications for

(in) tests, we mean the number of specified bits in tests. Reduction in the number of

specifications facilitates test encoding in case of designs with test data compression.

Another important factor effecting compact test pattern generation is fault ordering.

Faults whose detection facilitates detection of other faults should be targeted first

[67, 68, 69].

To take full advantage of X-bounding and test points in generating compact

(small) test sets, existing ATPG may have to be modified. ATPG should not only

generate tests that detect targeted faults; while generating tests, one should also

facilitate detection of yet undetected faults to generate close to minimal test sets

[5, 30, 47]. Specifically, always utilizing test points to generate tests may minimize

specifications in tests but usually will not facilitate detection of undetected faults.

We propose a new ATPG guidance mechanism that balances between reduced spec-

ifications in tests by using test points and X-bounding and facilitating detection of

undetected faults by exploring larger specification options with comparatively lower

probability. We also found that compact test generation for BIST ready designs is
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influenced by the order in which faults are targeted [67]. Fault-ordering and new

methods to guide ATPG to achieve compact test sets for BIST ready designs are the

focus of the work presented in this thesis.

3.2.1 ATPG Decisions Using Existing Techniques

Shortcomings of previous ATPG guidance approaches in dealing with BIST

ready designs is discussed next. While using random decisions for line justification

and/or D-propagation, the probability of the selection of test points is significantly

reduced as now an ATPG will select test points and other costlier options with equal

probability. In Figure 3.7 (A), we illustrate two versions of the same circuit: pre and

post insertion of an AND type control point (TP) on a line A-B. C is the pseudo-

primary input used to control the control point. ATPG using random decisions: to

justify a 0 at an AND control point will have equal probability of selection of input’s B

or C for justification. Random decision results in under-utilization of test points and
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over-specification, even if detection of any other undetected faults is not facilitated.

While using an ATPG guided by faults [5, 36] guiding ATPG decisions towards

C can facilitate detection of only one additional fault. ATPG, when guided toward

B, typically facilitates the detection of a larger number of faults with a comparatively

larger number of specified positions. Since ATPG decisions are based on the number of

undetected faults, almost all justification decisions will be guided toward B, resulting

in under-utilization of test points and difficulty in encoding.

A SCOAP based ATPG will always guide an ATPG towards a test point as

it is easier to control and observe, hence reducing the possibility of facilitating test

generation for undetected faults in the fan-in cone of B.

In Figure 3.7(B), we illustrate a case of pre and post observation point insertion

on a line. A new observation point OP is added to line B with a new PO/PPO. In

case of an observation point, as shown in Figure 3.7(B), a random decision ATPG

will equi-probably choose between observation point C and fan-out B for propagation,

leading to higher specifications. A SCOAP based method will always guide ATPG

toward an observation point OP, which will prevent facilitation of test generation

for a large number of faults along propagation path using B. If the current set of

undetected faults is used as a guidance measure [36, 47], ATPG will almost always be

guided toward B rather than the observation point OP, leading to higher specifications

and difficulty in encoding.

In Figure 3.7(C) we illustrate a pre and post X-bounding scenario of an X-

source. X-source A is X-bounded using a MUX and insertion of another PI/PPI B.
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While using X-bounding, a random decision ATPG will pick randomly among X-

source A and a fixed value at the input of MUX inserted for X-bounding B, leading

to unsuccessful justification decision in 50% of cases.

An ATPG guided by undetected faults is oblivious of the presence of an X-

source and will be guided based on faults, which by high priority are the same due to

the presence of a s-a-1 or s-a-0 at A and s-a-1 or s-a-0 at B. Therefore, both random

and fault based ATPG fail to make good decisions in the presence of X-bounding

logic.

SCOAP guided ATPG will work well with X-bounding logic as X-sources are

assigned ∞ values for SCOAP controllability of 0 and 1, thus ATPG will not be

guided toward X-source A; other possibilities i.e. B will be chosen for justification

decision.

The above discussion illustrates the shortfalls of the current ATPG guidance

measures in handling designs with test points and X-bounding logic.

3.2.2 Overview of ATPG for BIST Ready Designs

We consider the issues discussed above to augment a state of the art com-

mercial ATPG to generate more compact tests for BIST ready designs. A novel

fan-out-free region (FFR) based fault ordering scheme which facilitates detection of

undetected faults is proposed. We propose a new ATPG decision methodology to

obtain compact test sets for BIST ready designs with test points and X-bounding.

ATPG decisions are guided by the proposed S and M measures and using a weighted
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random decision approach to balance between effective usage of X-bounding and test

points without compromising detection of yet undetected faults during dynamic com-

paction.

3.2.3 FFR Based Fault Ordering

In this section, we will describe the proposed fault ordering method. Faults

whose tests lead to detection of other undetected faults should be targeted first [68,

69]. We propose a simple FFR based fault ordering heuristic. We start with some

basic definitions.

FFR Root: Output gate of an FFR.

Gate Height: Number of gates needed to be traversed from a gate to the FFR

root is the height of the gate. Inverters and buffers are ignored in this count.

Gate height can be calculated by running a preprocessing step to partition the

circuit into FFRs and then assign every gate its corresponding height.
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FFR Leaf: A gate which has either an FFR root, a scan cell, or a primary

input at one of its fanin.

Example: In Figure 3.8, we show an FFR with root A. The height of gates

A, B, and C are 0, 1, and 2 respectively. The heights of inputs w, x, y, and z are 0,

2, 3, and 0, respectively.

Consider two undetected faults in the current circuit B s-a-1 and C s-a-1. If

a test for B s-a-1 is generated as (1,0,X,X), clearly no possibility exists to generate a

test for fault C s-a-1 by incrementally specifying the unspecified inputs of the circuit.

However, if fault C s-a-1 is targeted first, every test for C s-a-1 is also a test for B

s-a-1. Instead of two test vectors required to generate a test for both fault a single

vector is feasible.

The above example illustrates that the ordering of faults is important. Any

fault at a greater height (i.e. further away from the output (root) of the FFR) will

require propagating a D or D from the faulty gate to the root of the FFR through a

larger number of gates. If such a D or D is propagated, all the compatible faults along

the path from the gate will also be detected. Also, it may possibly help in detecting

other faults, as propagation of a D or D translates to the setting of other inputs of

the gates on the path, to non-controlling values. Thus, considering faults in a given

FFR, tests generated for faults at higher level (greater height) gates usually facilitate

detection of more undetected faults in comparison to faults at a lower height (closer

to FFR root).

The importance of fault-ordering can also be explained using the basic con-
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cepts of test compaction. For any compaction scheme the number of specifications

per detected fault can be considered as a figure of merit. Low specification per fault

typically results in lower pattern count by facilitating the detection of other unde-

tected faults [36, 47]. Height based ordering has a greater impact for BIST ready

designs, as typically FFRs are smaller in BIST ready designs due to the insertion of

test points.

3.2.3.1 Height Based Ordering of Faults

In height-based ordering of faults, we order faults in descending order of height.

However, if a fault list is generated in a level by level trace of a circuit, chances are

that adjacent entries in the list are from the same FFR. Targeting faults in the same

FFR usually use similar paths for propagation of a D or D from the FFR root, leading

to these tests facilitating the same set of undetected faults. We avoid listing faults in

the same FFR consecutively by combining random shuffle and height based ordering,

as described in the procedure given in Figure 3.9. In lines 2-4, we organize list Fi

in sorted order based on the heights of faults in their respective FFRs. Lines 8-14

deals with division of the list into two parts: LISTA which contains odd positions of

Fi, and LISTB contains even positions, respectively. In line 15, we randomly shuffle

LISTB containing half the number of faults. Lines 17-28 deal with the formation of

a new list Ff with ith even positions occupied by LISTB[i/2]. When i is odd assign

fault at LISTA[i/2] to Ff [i]. In the above procedure, since half of the final fault list is

still sorted according to their FFR height, faults in deep FFRs are given priority, but
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Require: Initial fault list Fi of size n.
Output: An ordered fault list Ff

Fault ordering is run at the start of test generation process
Randomly shuffle fault list Fi

for All faults in list Fi do
Arrange faults in descending order of FFR height of their respective faulty gates
//Height is number of multiple input gates travered from fault location to the
root of the ffr containing the fault

end for
i=0;j=0;k=0
Create two empty lists LISTA=empty, LISTB=empty
//Store odd positions of sorted list in LISTA and even in LISTB
while i < n do

if i is odd then
LISTA[j]=Fi[i], j=j+1, i=i+1

else
LISTB[k]=Fi[i], k=k+1, i=i+1

end if
end while

Randomly shuffle LISTB
//Create new list with odd position occupied by LISTA and even by randomly
shuffled LISTB
i=0;j=0;k=0
Create empty list Ff , for storing final ordered fault list
while i < n do

if i is odd then
//Odd position of final list contains faults in increasing FFR heights
Ff [i]=LISTA[j], j=j+1, i=i+1

else

// Even position in the list contains randomly shiffled faults
Ff [i]=LISTB[k], k=k+1, i=i+1

end if
end while

Ff is ordered fault list for ATPG

Figure 3.9: FFR height-based fault ordering procedure.
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Figure 3.10: Number of specifications and fault ordering.

random selection of half of the list reduces the probability of the selection of faults

from the same FFR.

In Figure 3.10, we compare the number of specifications per detected faults

for a non-BIST ready design with and without fault ordering, normalized to 100 for

an ATPG without fault ordering. The same comparison for BIST ready designs is

also given.

As shown in Figure 3.10 a non-BIST ready version of the circuit results in

only a 6% reduction in the number of specifications due to fault ordering, however,

in the case of a BIST ready design, the number of specifications per detected faults

is reduced by 11%.
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3.2.4 ATPG Guidance Measures

We use two SCOAP based measures, called S and M guidance measures, to

guide ATPG decisions. We will first describe how to calculate them, followed by

a brief discussion on their use for guiding ATPG decisions. SCOAP appropriately

captures the following:

1. Presence of a test point, as observability/controllability values change to mini-

mum values.

2. Post X-bounding controllability of any line l driven by an X-source is reduced

significantly.

3. No periodic update is required during the test generation process, compared to

some other ATPG methods, to generate a compact test as in [5, 36].

The exploration of new circuit areas is necessary for creation of compact tests

[30, 36]. Weighted random approaches used in this work explore all options with

some probability. Decision options resulting in a high number of specifications are

used with lower probability.

3.2.4.1 S Guidance Measures

The S guidance measures are derived from SCOAP measures, previously used

to guide ATPG in [29] and are calculated for every line [1]. For a given line l where S

stands for SCOAP, SJ1(SJ0) are SCOAP based justification measures for 1(0), and

SP stands for SCOAP based measures to guide D-propagation. The original SCOAP

[1] measures are C1(l), C0(l), and O(l) where C1(l) is the 1 controllability, C0(l) is
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the 0 controllability, and O(l) is the observability of a line l, respectively. The S

measures for line l are, SJ1(l) = 1/C1(l) and SJ0(l) = 1/C0(l). These are used for

guiding line justification decisions. SP (l) = 1/(O(l)+1), where SP (l) is the measure

to guide ATPG propagation decisions. A 1 is added to O(l) as an observability value

of 0 and can lead to invalid division operations. Next, we discuss our second SCOAP

based measure used to guide ATPG.

3.2.4.2 M (Minimum) Guidance Measures

Minimum (M) measures are also derived from SCOAP [1]. Minimum measures

for a given line l are:

MJ0 = 1/(C03), MJ1 = 1/(C13), MP = 1/((1 + O)3),

where MJ0(MJ1) are minimum justification measures for 1(0) and MP is the

minimum propagation measure, respectively.

These measures were used in [5] and were called SJ and SP measures. While

using the above measures, instead of making decisions directly based on them, we

make weighted probabilistic decisions based on the measures described above. As

discussed earlier, test points and X-bounding usually lead to reduction in SCOAP

testability values and corresponding S and M measures increase accordingly. Creating

a balance between minimum number of specification and guiding ATPG toward other

non-minimum specification options, to facilitate detection of undetected faults, is a

must for creating compact tests for compression. We create this balance by using a

mix of S and M measures.
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3.2.5 Justification Decisions

Justification decisions are required for a gate g in the J-frontier [9] whose

outputs have specified values not yet implied by its inputs. A controlling value is

assigned to one of the unspecified inputs of the gate, driving the gate on the J-frontier.

While making a justification decision, we calculate probabilities of selection for all

unspecified inputs using both M and S justification measures. Later, we calculate a

mixed probability based on both S and M measures to make a final decision. Let

the unspecified inputs of a gate g on the J-frontier be ip0, ......, ipm. If v ∈ (0, 1) is

the controlling value for gate g. The probability of the selection of ipj to justify v on

gate g using S guidance measures is given by:

p(ipj)
S = SJv(ipj)/

∑
i
i=1...mSJv(ipi)

Similarly, the probability of the selection of ipj using M guidance measures is

given by:

p(ipj)
M = MJv(ipj)/

∑
i
i=1...mMJv(ipi).

The final probability actually used for the selection of input ipj is the average

of the two probabilities p(ipSj ) and p(ipMj ):

p(ipj)
mixed=(p(ipj)

M+p(ipj)
S)/2

Next, we give an example of justifying a 0 to inputs of a 3 input AND gate

with inputs A, B, and C. SCOAP controllability (0) values for inputs A, B, and C

being (2, 4, 8). The probability of a selection written as (p(A), p(B), p(C)) using

SCOAP based decision is (1, 0, 0). Random decisions lead to the probability of the

selection as (1/3, 1/3, 1/3). Probabilities calculated using S-Measures, M-Measures
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and guidance mechanisms used in this work are (0.57, 0.29, 0.14), (0.88, 0.11, 0.01),

and (0.72, 0.20, 0.08), respectively. Guidance by S Measures lead to a weighted

random decision where the least favorable input C with SCOAP value 8 has a 14%

chance of being selected. Decisions by M-measures are more focused toward the

selection of the easiest to justify input. The probability of the selection of inputs

with a higher SCOAP value is considerably reduced in comparison to other inputs.

However, the average of probabilities obtained by S and M measures result in creating

a balance between the number of specifications and the facilitation of generations of

tests for undetected faults.

3.2.6 Propagation Decisions

Propagation decisions are required when we have multiple gates on the D-

frontier and one of them is selected to propagate a D or D to the circuit outputs

by implying a non-controlling value to all other unspecified inputs of the selected

D-frontier gate.

As in the case of justification decision, we calculate the probability of the

selection of a given D-frontier gate using S and M measure and calculate a final

mixed probability for the selection of gates on the D-frontier to balance between

facilitation of detection of yet undetected faults and the number of specifications

required for propagation.

If g0, ...., gm are gates on the D-frontier the probability of the selection of gate

gj is calculated for both S and M ATPG guidance measures.
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The probability of the selection of gate gj using M measures is given by:

p(gj)
M = MP (gj)/

∑
i
i=1...mMP (gi).

Similarly, the probability of the selection of gate gj using S measures is given

by:

p(gj)
S = SP (gj)/

∑
i
i=1...mSP (gi).

The final probability actually used for the selection of gate gj on D-frontier is

the average of the two probabilities p(gSj ) and p(gMj ):

p(gj)
mixed=(p(gj)

M+p(gj)
S)/2

3.3 Transition Fault ATPG

Test generation of transition faults requires initialization of the fault site in

the first time frame, and activating a transition at the fault site and propagating the

fault effect to PO/PPO’s for observation in the second time frame. The generation

of tests for a transition fault slow-to-rise(fall) start with justifying a value 1(0) at the

fault site. A value 1(0) is added to the J-frontier for slow-to-fall(rise) faults for the

first frame for initialization of the fault. Next, the value on the line is justified by

assigning appropriate values to the input(s) of the gate driving the faulty line.

Next, in the second time frame depending on the transition fault type a transi-

tion needs to be activated and propagated. In other words for the second time frame-

for slow-to-fall(rise) fault a 0(1) needs to be assigned to the fault site and the fault

effect(transition) needs to be propagated. During the second time frame the problem

translates to the detection of a stuck-at-1(0) fault in the second time frame. In other
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words in the second time frame, a for slow-to-fall (rise) fault, a 0(1) value needs to

be justified at the fault site (added to the J-frontier) and a D̄(D) needs to be added

to D-frontier to propagate the fault effect. During the test generation, any values in

the second time frame are satisfied from PPIs/PIs in the first time frame. Primary

inputs can not be specified in the second time frame and primary outputs can not be

observed in the first time frame, when launch-on-capture testing schemes are used.

The entries in the D-frontier are gates for which some input(s) have D or D̄

values and the outputs are unspecified. Justifying the required value on a line in

the J-frontier is done by assigning the proper value to one of the inputs of the gate

driving in the frame under consideration. All propagation decisions take place in the

second (propagation) time frame. Propagating D or D̄ to an observed output in the

propagation frame is done by selecting a gate from the D-frontier and propagating

the transition effect, D or D̄, to its output. The selection of a proper input to be

assigned to justify a line value in the J-frontier during initialization and propagation

frame and selecting a proper gate from the D-frontier to propagate D or D̄ in the

propagation frame, is important to obtain tests with a minimum number of specified

values, to obtain minimal size test sets, and to reduce test generation times.

The ordering of faults also has an impact on the overall test length. One would

think that targeting faults that help in the generation of tests for other undetected

faults first is a good idea. The ordering should help with the following:

1. Fortutious Detection: Faults should be targeted in an order to increase fortu-

itous detection. Tests can be generated for large numbers of other, yet to be
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detected faults while generating a test for originally targeted fault.

2. Hard to Detect Faults: A few faults are hard to detect; typically a test generated

for a hard-to-detect fault does not result in fortuitous detections. A hard-to-

detect fault, if targeted in the end, results in low fortuitous detections and

typically increases pattern count.

A balance needs to be created to target faults in such a way that large numbers

of faults are detected fortuitously, while keeping pattern counts in reasonable limits.

In the next sub-section, we propose a new fault ordering mechanism that

balances between targeting faults with high fortuitous detection and hard to detect

faults.

3.3.1 Fault Ordering Based on Test Enumeration

We developed a new fault ordering mechanism; before that we propose two

new measures: Test Enumeration Measures for Propagation (TEP) and Test Enu-

meration Measure for Justification (TEJ) to help classify faults in to one, having a

high fortuitous detection or hard-to-detect fault.

Consider an example of a three input AND gate with inputs A, B, C, output

D, and stuck at fault model. It is important to note that all stuck-at-1 or stuck-at-0

faults on A, B, and C, respectively, can be initialized at the same time.

However, for launching the final transition value at the fault site and propagat-

ing the fault effect, it is different. All slow-to-rise faults can be tested simultaneously,

as each of them require the same inputs (1, 1, 1) on (A,B,C), respectively. However,



www.manaraa.com

75

for slow-to-fall faults on (A, B, C), we require three vectors (0,1, 1), (1,0,1), and

(0,1,1), respectively.

Note that initialization and final launching of the transition during the prop-

agation phase are comparatively different as, during initialization phase, the fault

location only needs to initialized.

All the values in the propagation frame are controlled by initialization frames

it is much easier to justify a value in the initialization frame; hence, we will consider

only propagation frame.

We use two test enumeration measures, that estimates number of faults whose

detection is facilitated by a decisions, these measures are named Test Enumeration

Measures (TE measures).

3.3.1.1 TE Measures for Justification

Any justification decision in the propagation frame should facilitate placement

of the final transition on other fault sites; we estimate this by TEJ measures- each

line l is assigned two TEJ measures for both 0 and 1, respectively.

ATPG is guided more often toward options which facilitate the placement of

final transition value 1 for slow-to-rise and 0 for slow-to-fall transition faults.

For example, for a 3 input AND gate, TEJ0 will have a value of 3 and TEJ1

will have a value of 1 as slow-to-rise faults on inputs need 1 pattern to test and to

create a transition (0s can be initialized simultaneously), but three patterns to test

slow-to-fall faults as each slow-to-fall faults on input need a separate pattern. The
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Require: Set TEJ1 TEJ0 to 0 for all lines
for Forward trace from PI/PPI towards PPO in a levelized manner do

if If gate is scan cell then
TEJ i0 = TEJ i0 = 1

end if
if If gate is primary input then
TEJ i0 = TEJ i0 = 0

end if
if If gate is AND(NAND) then

Output TEJ0(1) is sum of input TEJ0’s
TEJoutput0(1forNAND) =

∑
TEJ0all inputs

Output TEJ1(0) is equal to maximum among input TEJ0’s
TEJoutput1(0forNAND) = max TEJ1 among inputs

end if

if If gate is OR(NOR) then
Output TEJ1(0) is sum of input TEJ1’s
TEJoutput1(0forNAND) =

∑
TEJ1all inputs

Output TEJ0(1) is equal to maximum among input TEJ1’s
TEJoutput0(1forNAND)

= max TEJ0 among inputs
end if

if If gate is INV(BUF) then
BUF Output TEJ0(1) is equal input TEJ0(1)

INV Output TEJ1(0) is equal input TEJ0(1)

end if
Similarly TEJ values can be calculated for other gates- TEJ value at output that
can be satisfied by controlling values at inputs, corresponding TIJ’s at controlling
inputs are added

In case TEJ value at output satisfied by non-controlling values at inputs we take
maximum among inputs taking care of polarity

if Stem then
TEJ0 = 1, TEJ1 = 1 respectively for stem gate.

end if
end for

Figure 3.11: Calculation of TEJ1 and TEJ0.
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Require: Set TEP 0 TEP 1 to 0 for all lines
for Trace in a leavelized manner starting from PO/PPO towards PI/PPI do

if gate i is a PPO/PO then
TEP 0=0, TEP 1 = 0

else
for input’s j of gate i do

for v ∈ {0, 1} do
if value v at j uniquely determines value for i then

if v is 1 TEP j1 = TEP i1 + TEJ j1

if v is 0 TEP j0 = TEP j1 + TEJ j1

else
Store all inputs other than j required to propagate value at input j to
output i in an array L
for every line l in array L do

if v = 1 TEP j1 = TEP j1 + TEJl1 + TEJl1
else TEP j0 = TEP j0 + TEJl1 + TEJl0

end for
end if

end for
If i is inverting gate TEP j0 = TEP i1 + TEJ j0TEP j1 = TEP i0 + TEJ j1

Else TEP j1 = TEP i1 + TEJ j1 ,TEP j0 = TEP i0 + TEJ j0

end for
end if
If stem add all values of for branches

end for

Figure 3.12: Calculation of TEP 1 and TEP 0.

procedure to calculate TEJ measures is illustrated in Figure 3.11.

3.3.1.2 TE Measures for Propagation

Test enumeration measures for propagation (TEP) measures are of two types:

TEP measures to estimate the number of times a justification is required at a line

during the propagation frame, and TEP measures for propagation estimates of the
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facilitation of propagation of transition to observed PO/PPO.

On the lines of SCOAP observability measures, we calculate TE measures for

propagation (TEP). We use TEJ values to calculate TEP measures; however, TEP

values are dependent on the polarity of fault-free values after transition, currently

being propagated. Hence, two TEP values are assigned to each line corresponding to

1 and 0, respectively. Figure 3.12 shows the procedure to calculate TEP measures.

3.3.1.3 Generation of Final Fault List

Total Test Enumeration Measures (TET) are used to get the total of fortuitous

detection capabilities of a fault. TET combines estimates of fortuitous detection of a

fault during propagation and justification and hard-to-detect faults that would require

a separate pattern. The procedure to generate the final fault list targeted by ATPG

is given in Figure 3.13.

3.3.2 ATPG Decisions

ATPG decisions are made in a similar fashion, as the previously- discussed

ATPG technique [5]. If the gate is marked, static measure is used for making ATPG

decisions, or else appropriate test enumeration measures are used instead of dynamic

measures, keeping the time-frame into consideration.

We use a propagation-first ATPG approach to generate tests. The advantages

of using a propagation-first ATPG approach for transition faults are:

1. While generating compact tests for circuits with compression the number of

specified positions is important. Most of the specified positions are resultant of
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Require: Set TEJ1 TEJ0 to 0 for all lines
We define a new value, Test Enumeration Measures Total(TET), which is measure
of fortutious detection possible when a test
fora given fault is generated
For every line i we have two total test enumeration measures TETi1(0) which
is sum of test enumeration measure for propogation TEPi1(0) multiplied by test
enumeration measure for justification TEJi1(0), respectively and store it in a list
ListA
Sort LISTA in descending order according to Total Test Enumeration Measures
//Detection of hard to detect fault and fortutious detection is balanced in next
step.
Make a final list of faults Listf , by selecting a fault from beginning of ListA and
moving it from LISTA to LISTf and then a fault from the end of ListA and moving
it from ListA to LISTf .
LISTf is the final fault order targeted for test generation by ATPG

Figure 3.13: Generation of Final Fault Order

the creation of a propagation path from fault location to the PO/PPO.

2. Only the initialization time-frame is directly controllable from the inputs. Prop-

agation time frame is controlled by tracing all the values from the propagation

frame to the initialization frame PO/PPO. Hence, the impact of a propagation

decision is more pronounced.

3. In case of stuck-at faults propagation, first approach is known to work better

than justification-first approach.

3.3.2.1 Propagation Decisions

Propagation decisions are made in propagation frame during test generation

for transition faults. Initialization of a fault is comparatively easier than creating
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transitions at the fault location and propagating it to the PO/PPO. Fault detection

for transition faults can be sub-divided into two parts:

1. Initialization of fault location (line l) to 0 (1) for slow to rise(fall) fault in

initialization frame.

2. Detection of a stuck-at-0(1) fault on line l (fault location) in propagation time

frame.

Since any line l is controllable only from initialization frame, the second step

of detection of stuck-at faults in the propagation frame is comparatively difficult to

achieve and results in a higher number of specified scan-cells (during the initialization

frame). Therefore, to generate compact tests it is important to make prorogation

decisions in a manner that facilitates the detection of additional stuck-at-0(1) (for

slow-to-rise(fall)) faults in the propagation frame to enhance fortuitous detection.

Simultaneously, ATPG decisions should try to create a balance between fortuitous

detection and the number of specified positions.

Dynamic and static guidance measures proposed in [5] using a probabilistic

marking scheme and creates a balance between fortuitous detection and the number

of specified positions. We use dynamic and static ATPG guidance measures described

in [5] to make propagation decisions as:

1. Dynamic measures for propagation facilitates the second step in transition fault

tests, the detection of a stuck-at fault in propagation frame. ATPG decisions

are made in a manner that the second step is facilitated for a large number of

faults.
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Table 3.5: Comparison of the Proposed and Random Decision

Random Decision ATPG Method1 ATPG Method1 + Flt. Ordering
CKT FC TL TL %Red TL %Red
D1 96.71 15040 11548 23.2 11016 26.8
D2 93.31 5696 4513 20.8 4385 23.0
D3 94.56 20032 10280 48.7 9672 51.7
D4 95.31 4992 4277 14.3 4232 15.2
D5 99.26 7938 6671 16.0 6389 19.5
D6 98.63 2048 1699 17.0 1706 16.7
D7 91 2496 1920 23.1 1893 24.2
D8 97.04 8064 6327 21.5 5918 26.6
D9 95.94 9359 7738 17.3 7626 18.5

Avg. 75665 54974 27.3 52837 30.2

Table 3.6: Effect of Compression Ratio

Circuit Compression Ratio Proposed ATPG Random Decision ATPG %Red
Size FC TL FC TL TL
D1 50 96.08 3645 96.08 3883 6

1.2M 100 96.08 6035 96.08 7151 16
D2 50 93.35 3146 93.35 3685 15

3.2M 100 93.35 5181 93.35 6788 24

2. Step1 of activating the transition fault is much easier, as all values need to be

justified to initialization-frame scan cells.

3.3.2.2 Justification Decisions

Justification decisions are made in initialization and propagation frames. In

propagation frames, we make justifications decisions based on dynamic guidance mea-

sures; this creates a balance between fortuitous detection and the number of specified

scan-cells. We analyze the observability of a fault being propagated forward. If the

fan-in of the gate on the D-frontier has a fault-free value which is also the controlling

value for the gate on the D-frontier, no fault whose D-frontier reaches the off-path

inputs can be detected. D-frontier for all such faults is killed by the presence of the
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controlling value. Hence static measures, which result in the reduction of the number

of specified positions, are used for ATPG guidance.

3.4 Experimental Results

We first present the experimental results for fault-based ATPG guidance ap-

proach presented in [5], referred to as Method1. In the next sub-section, we will

present the results for ATPG for BIST-ready designs presented in [6]. In Section

3.4.1 and 3.4.2 we consider stuck-at faults and in Section 3.4.3 we consider transition

faults.

3.4.1 Fault-Based ATPG

We incorporated the proposed methods of Method1 to guide line justification

and D-propagation decisions into a state-of-the-art commercial ATPG. The ATPG is

D-algorithm [9] based. It uses dynamic compaction [29], where unspecified values in

test cubes are used to detect additional faults called secondary target faults. In the

current use of the base line, ATPG line justification and D-propagation decisions are

made randomly, as it is known to yield smaller test sets than using SCOAP-based

controllability and observability measures for these decisions.

In Table 3.5, we compare the results of test generation using random decisions

and the Method-1 ATPG for line justification and D-propagation. After the circuit

name, we give the fault coverage obtained and test lengths using random decisions,

followed by the values when the Method-1 ATPG is given. In the last column, we give

the percentage reduction in test length obtained by Method-1. It can be seen that,
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Table 3.7: Results when p is 1/2 for all gates

Random ATPG Gates marked with p = 1/2
% Red

Circuit FC TL FC TL TL
D1 96.71 15040 96.71 13121 12.8
D2 93.31 5696 93.31 4954 13.0
D3 94.56 20032 94.56 14881 25.7
D4 95.31 4992 95.31 4632 7.2
D5 99.26 7938 99.26 7183 9.5
D6 98.63 2048 98.63 1869 8.7
D7 91 2496 91 2218 11.2
D8 97.04 8064 97.04 7047 12.6
D9 95.94 9359 95.94 8656 7.5

Avg. 75665 64561 14.7

Table 3.8: Results using only static guidance measures

Random ATPG Proposed Static Measures
% Red

Circuit FC TL FC TL TL
D1 96.71 15040 96.71 14325 4.8
D2 93.31 5696 93.31 5524 3.0
D3 94.56 20032 94.56 16884 15.7
D4 95.31 4992 95.31 5231 -4.8
D5 99.26 7938 99.26 7659 3.5
D6 98.63 2048 98.63 1972 3.7
D7 91 2496 91 2367 5.2
D8 97.04 8064 97.04 7369 8.6
D9 95.94 9359 95.94 8937 4.5

Avg. 75665 70268 7.1

on average, the Method-1 ATPG reduces test lengths by about 21%. In contrast,

earlier methods using modified line justification and D propagation decisions [36, 39]

achieved, on average a test set size reduction of 6% and 5%, respectively.

In the next experiment, we generated tests for circuits D1 and D2 when the

designed compression ratios were set to 100X and 200X, and the results are reported

in Table 3.6, similar to Table 3.5. It can be noted that the percentage reduction in

test lengths using the Method-1 ATPG improves as the compression ratio is increased.

Finally, we performed three additional experiments to elicit the contribution
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Table 3.9: Results using only dynamic measures

Random ATPG Proposed Dynamic Measures
% Red

Circuit FC TL FC TL TL
D1 96.71 15040 96.71 13573 9.8
D2 93.31 5696 93.31 4727 17.0
D3 94.56 20032 94.56 17485 12.7
D4 95.31 4992 95.31 4432 11.2
D5 99.26 7938 99.26 6865 13.5
D6 98.63 2048 98.63 1828 10.7
D7 91 2496 91 2118 15.2
D8 97.04 8064 97.04 7127 11.6
D9 95.94 9359 95.94 8094 13.5

Avg. 75665 66249 12.4

of each of the three modifications to ATPG decisions we introduced, viz., marking

of gates, static measures, and dynamic measures. The results of these experiments

are reported in Tables 3.7, 3.7, and 3.8 using the same format as in Table 3.5. In

Table 3.7, we give the results of test generations when all the gates in a design are

marked with probability 1/2 and the Method-1 ATPG static and dynamic measures

are used. In this case we note that, on average, test set sizes are reduced by 12%,

relative to the base line ATPG results. Even though randomly marking gates lead to

smaller test sets than with the baseline ATPG, the test set size reduction is lower than

when the gates are marked with the probabilities used in the Method-1 ATPG. In the

next experiment, we did not use the marking of gates and used only static measure,

given in this work, to guide line justification and D propagation. The results of this

experiment are given in Table 3.8, from which we note that using only static measures

and no marking yields, on average, a reduction of 6.1% in test set sizes, relative to

the baseline ATPG. In the final experiment, we again did not use the marking of

gates and used only the Method-1 dynamic measures to guide line justification and
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Table 3.10: Comparison of fault ordering methods

Random Decision ATPG Method2 Ordering New Flt Ordering
CKT FC TL TL %Red TL %Red
D1 96.71 15040 14547 3.3 14239 5.6
D2 93.31 5696 5595 1.8 5490 3.8
D3 94.56 20032 19768 1.3 18706 7.1
D4 95.31 4992 4850 2.9 4706 6.1
D5 99.26 7938 7564 4.7 7427 6.9
D6 98.63 2048 1933 5.6 1973 3.8
D7 91 2496 2418 3.1 2380 4.9
D8 97.04 8064 7868 2.4 7728 4.3
D9 95.94 9359 9028 3.5 8834 5.9

Avg. 75665 73570 2.8 71484 5.8

D propagation decisions. Results are reported in Table 3.9, from which we observe

that using dynamic measures without marking gates yields, on average, a test set size

reduction of 12%.

In Table 3.10 we compare FFR height based fault ordering methods to newly

proposed fault ordering based on the ease of detection in Section 3.4.3. The new fault-

ordering method results in a 5.8% reduction in test length, in comparison to 2.8% by

the FFR height-based ordering procedure described in [6]. From the four experiments

discussed above, we conclude that using all four together maximally reduces the test

set sizes.

3.4.2 Experimental Results for BIST Ready ATPG

We used a commercial tool to make the designs BIST ready. The tool inserted

logic for X-bounding and inserted test points (control and observation), connected

to new scan cells that do not control functional logic. The maximum number of

test points allowed in a design was 0.5% of the number of gates in the design. We

also used a commercial tool to add test data compression logic using a sequential
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Table 3.11: Results for non-BIST ready designs

Random Decision ATPG Method1 + New Ordering Method2
CKT FC TL TL %Red TL %Red
D1 96.71 15040 11016 26.8 12212 18.8
D2 93.31 5696 4385 23.0 4437 22.1
D3 94.56 20032 9672 51.7 11667 41.8
D4 95.31 4992 4232 15.2 4033 19.2
D5 99.26 7938 6389 19.5 6933 12.7
D6 98.63 2048 1706 16.7 1802 12.0
D7 91 2496 1893 24.2 1914 23.3
D8 97.04 8064 5918 26.6 6273 22.2
D9 95.94 9359 7626 18.5 7624 18.5

Avg. 75665 52837 30.2 56893 24.8

decompressor and test response compactor to the BIST ready designs, as well as the

original designs.

In Table 3.11, we compare the results of test generation using random de-

cisions, the test length obtained by Method-1 ATPG, with new fault ordering and

Method-2 ATPG [6]. We also give the percentage reduction in test length in com-

parison to the test length obtained by a random decision ATPG. It can be seen that,

on average, the Method-1 ATPG combined by the new fault ordering methodology

reduces test lengths by about 30%. In contrast, line justification and D propagation

decisions using Method-2 [6] achieve, on average a test set size reduction of 24.8%.

Next, in Figure 3.14 we compare test lengths obtained for BIST ready designs

using various line justification, fault propagation, and fault ordering methodologies.

Test lengths are normalized in comparison to random decision ATPG, which is as-

signed a value of 100. On average Method-1 combined with the new fault ordering

procedure resulted in a 30.3% reduction in test length. Method-2, results in a lower

28% reduction in test length.
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Figure 3.14: Test length comparison for BIST ready designs

In practice, Method-2 is faster than all other techniques as shown in Figure

3.15 for non BIST ready designs. Run-time for the default ATPG is assigned a

value of 100; other run times are normalized in comparison with the default ATPG

accordingly. Method1 + new fault ordering increases run-time by 12%; Method-2

decreases run time by 11% on average.

3.4.3 Results for Transition Faults

In this section, we discuss the results for the transition fault (launch-on-

capture[2]) ATPG discussed in this chapter. In Table 3.12, we compare the results

of test generation for transition fault model using random decisions, with proposed
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Figure 3.15: Runtime comparison for non BIST ready designs

Table 3.12: Results for transition fault ATPG

Ckt FC RandomTL Proposed Trans %Red [5] TL %Red [6] TL %Red
D1 94.43 25277 19053 24.6 21822 13.7 21288 15.8
D2 93.63 20839 15804 24.2 17759 14.8 17411 16.5
D3 93.14 26535 11850 55.3 17276 34.9 15950 39.9
D4 57.92 2478 1562 37.0 1933 22.0 1996 19.4
D5 96.54 21213 13852 34.7 17842 15.9 16663 21.5
D6 88.15 19313 14682 24.0 16901 12.5 15839 18.0
D7 89.29 7052 5074 28.0 5677 19.5 6024 14.6
D8 93.46 13052 9680 25.8 10829 17.0 10234 21.6
D9 94.6 20628 14834 28.1 17749 14.0 15940 22.7

Avg. 156387 106391 32.0 127787 18.3 121346 22.4

Table 3.13: Results using only dynamic measures

Ckt FC RandomTL Dynamic Measures TL %Red
D1 94.43 25277 22630 10.5
D2 93.63 20839 18884 9.4
D3 93.14 26535 22742 14.3
D4 57.92 2478 2198 11.3
D5 96.54 21213 19030 10.3
D6 88.15 19313 17731 8.2
D7 89.29 7052 6347 10.0
D8 93.46 13052 11116 14.8
D9 94.6 20628 17212 16.6

Avg. 156387 137891 11.8
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Table 3.14: Results with only static measures

Ckt FC RandomTL Static Measures TL %Red
D1 94.43 25277 21619 14.5
D2 93.63 20839 17426 16.4
D3 93.14 26535 18762 29.3
D4 57.92 2478 1950 21.3
D5 96.54 21213 18394 13.3
D6 88.15 19313 16959 12.2
D7 89.29 7052 5783 18.0
D8 93.46 13052 10985 15.8
D9 94.6 20628 16593 19.6

Avg. 156387 128471 17.9

Table 3.15: Results with only fault ordering

Ckt FC RandomTL New Flt Ordering TL %Red
D1 94.43 25277 24185 4.3
D2 93.63 20839 20018 3.9
D3 93.14 26535 24346 8.3
D4 57.92 2478 2402 3.1
D5 96.54 21213 20127 5.1
D6 88.15 19313 18378 4.8
D7 89.29 7052 6722 4.7
D8 93.46 13052 12535 4.0
D9 94.6 20628 19692 4.5

Avg. 156387 148405 5.1

transition fault ATPG, the Method-1 ATPG, and Method-2 ATPG for line justifica-

tion and D-propagation. After the circuit name, we give the fault coverage obtained

and test lengths using random decisions, followed by the values when the proposed

transition fault ATPG is given. In the next column, we give the percentage reduction

in test length obtained by the new transition fault ATPG. Test lengths obtained by

Method-1 ATPG, followed by percentage reduction and Method-2 ATPG are also

given. New transition fault ATPG reduces test length by 32% in comparison to

random decision ATPG; only 18% and 22% reduction is achieved by Method-1 and

Method-2 ATPG.
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Later we study individual components of the proposed transition fault ATPG

and their impact on pattern count reduction; we individually study the impact of

dynamic and static measures as well as fault ordering on the final pattern count. In

Table 3.13 we show that pattern count reduction reduces to 12% if only dynamic

measure was used for ATPG guidance; no fault ordering was used. Pattern count

reduces by 18% if only static measure was used for ATPG guidance as shown in Table

3.14. Impact of fault ordering is given in Table 3.15; justification and propagation

decisions were made randomly in this case. Fault ordering reduces pattern count by

5.1%.
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CHAPTER 4
ISOMETRIC TEST COMPRESSION

Test compression schemes are commonly characterized by their compression

ratios which can reach, at their best, the value of f−1, where f is the number of

specified positions, on average, that need to be deterministically determined in a scan

cycle or fill rate. In this chapter, we demonstrate that on-chip test data compression

can be taken to a new level by synergistically engineering both test generation (ATPG)

and encoding of tests. We propose a new test compression scheme that has the

following features:

• Elevates compression ratios to values beyond what is achievable through the

conventional reseeding.

• Reduces the switching activity during scan shift-in.

• Provides a programmable option to control test power, without hardware mod-

ifications.

• Low hardware overhead, in comparison to previous low power compression

schemes.

The new scheme deploys an on-chip power-aware test data decompressor, the

corresponding test cube encoding method, and a compression-constrained ATPG that

allows loading scan-chains with patterns having low toggling (count of change in the

content of scan cells), while encoding a significant number of specified bits produced

by an ATPG in a compression-friendly manner. As a result, the new solution offers
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Figure 4.1: Isometric Decompressor

very high compression ratios. Moreover, the new scheme avoids periods of elevated

toggling in scan-chains and reduces scan unload switching activity due to unique test

stimuli produced by the new technique, leading to a significantly reduced shift toggle

rates for the entire circuit under test.

4.1 Isometric Architecture

Figure 4.1 recalls a generic architecture of our on-chip test data decompressor

originally presented in [60] called EDT, which we modify in this work. It consists of a

ring generator and a phase shifter driving the scan chains. Compressed test patterns

are delivered to the decompressor through c external channels in such a way that
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Figure 4.2: Low power template

a new C-bit vector is injected into the ring generator every scan shift cycle. The

hold register in the EDT placed between the ring generator and the phase shifter

is reused. It captures and saves certain states of the ring generator. As a result,

the toggling-free data can be provided to the scan-chains for a number of continuous

shift cycles by taking the shift data from the hold register while the ring generator

keeps advancing to the next states needed to encode another group of specified bits

in future scan cycles.

4.1.1 Overview of Isometric Compression Scheme

In this work, we demonstrate that the proposed architecture opens a new

direction in test data compression when used in conjunction with a compression-

constrained ATPG. An additional circular (or template) register is added, which

facilitates operations of the decompressor as illustrated in Figure 4.1.

The template register size matches the longest scan-chain. Initially, a tester,

using a single channel, uploads a control pattern to the circular register. This is done
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only once for a number of patterns. Next, from the template register, data is applied

to the hold register to control whether it is updated from the ring generator or not,

while the ATE channels upload successive compressed test patterns in the scan-shift

mode. As a result, a control bit is delivered to the hold register every shift cycle in

order to indicate whether the hold register is to be updated with the current content

of the ring generator. If the hold register is updated, such a time will be referred to

as a toggle point. Two successive toggle points determine a hold period.

The scheme of Figure 4.1 allows partitioning a given test cube into several

transition-free hold periods, each comprising a certain number of consecutive slices

of scan cycles. One can therefore repeat a given decompressor state many times in

succession by using the hold register, storing a state that the ring generator entered at

the beginning of the hold period. Locations of all toggle points form a test template

(see Figure 4.2), where two colors indicate the logic values of 0 and 1 applied to

successive scan cells. As a result, the contents of the template register can be used to

control the operation of the decompressor. Only the first toggle value in a consecutive

sequence of toggles is required to be deterministically determined. The rest of the

scan-cell values in the chain are determined by the decompressor hold register till the

next toggle. However, new values called free-variables enter the ring generator, and

which can be used in later scan cycles.

The actual fill rate (the number of specified bits) does not have to be either

a compression-limiting factor or a low switching activity constraint. For example,

having the same logic value assigned to several cells hosted by the same scan chain
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Figure 4.3: Circuit test cubes

may ease problems related to both compression and toggling. Indeed, only specified

bits occurring at toggle points must be encoded, whereas bits of the same value make

it possible to deliver identical test data to scan chains for a number of shift cycles,

thereby reducing the number of transitions in scan cell values.

Consider the example shown in Figure 4.3. Let a circuit under test feature 28

inputs. A part of this circuit is an XOR tree. In order to detect an indicated stuck-

at-1 fault, one can apply test patterns listed in the figure. The number of specified

bits that have to be encoded within the first vector is equal to 3 + 25 = 28, whereas
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to encode one of the remaining patterns it suffices to target only 3 + 2 specified

bits. Indeed, the specified values of 0 (1) occur here in sequences not interspersed

with 1-bits (0-bits), and thus can be obtained by using the hold functionality since

the decompressor outputs can be sustained to deliver the identical test data for a

number of shift cycles. Clearly, it is easier to encode just 5 values (and update the

hold register) than to handle 28 specified locations.

For the reasons stated above, the scheme presented in this thesis differs from

earlier test data compression schemes in a fundamental way:

1. It does not work with test cubes generated prior to the encoding process.

2. Nor does it attempt to determine hold cycles based on locations of the specified

bits.

3. Instead, after forming a test template, it employs the template to guide the

ATPG as to the most suitable sites of specified bits such that the resultant test

patterns are highly compressible, while scan toggling remains within acceptable

limits.

4. Because of their high fill rates and special form (many bits of the same value

populating the same scan chain), these vectors will be further referred to as

isometric patterns.

All the free-variables entering the continuous flow decompressor during hold

periods can be used during subsequent toggle cycles to encode any peaked in the

specified bits that need to be encoded. The above mentioned problem of uneven

peaks in specified bits of a test cube, we believe, is usually as a result of bad scan
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Figure 4.4: Isometric compression flow

chain stitching and the problem can be solved by re-stitching the scan-chains, but

most designers would not allow it.

4.2 Isometric Compression Flow

The isometric test compression scheme can be broadly divided into two phases

details of which are described below:
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• Phase 1: Deals with the generation of templates, hold and toggle sequence,

required to control the hold register.

• Phase 2: Deals with communicating constraints due to test template to EDT

solver (mechanism for encoding any test vector). The same constraints are also

passed on to the ATPG. Subsequently, K patterns are generated using the same

template. In this work, we set K to 64.

In Figure 4.4, we illustrate isometric test compression flow. During template

generation process, at first we start by generating test cubes for N faults. Cube

generation is followed by storing specified positions that occur in test cubes with very

high probability; irrespective of how ATPG decisions were made during the test cube

generation, other assignments are not stored in this minimized (called residual cube)

cube and are discarded.

Generation of residual cube is followed by the generation of the template.

Some important properties of an effective test template are:

• The template should help in controlling the toggling activity during scan shift.

• It should encode a large number of specified scan cells by hold; i.e. without

requiring any free variables.

• The template is able to encode cases when a particular scan-slice has a very large

number of specified bits by placing the appropriate number of holds before it.

• The template should not lower fortuitous detection of faults.

The first step during the template generation process is the merging of residual

cubes. The merging step is very similar to commonly used cube merging procedures
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during the test compaction procedure described in Chapter 2.

One major difference is that we allow conflicts during the merge. Since a

template is used to generate 64 patterns, a conflict based merge allows a scan-cell to

be assigned a value of 0 for one vector and 1 for some other vector, hence a test for

two faults with conflicting requirements can be generated at toggle points, and this

increases the effectiveness of the generated template for test generation.

The actual template is generated using a variant of a set covering problem[45].

Toggles are added incrementally after every residual cube is merged by running a

covering algorithm. A toggle locking mechanism of previously generated toggles,

ensures that any fault for which a test can be generated can be targeted even after

the merging of a few other residual cubes further down in the process.

Post template generation, the template constraints are given to an EDT solver,

a mechanism to check if the patterns generated can actually be successfully encoded

by the hardware controlled by the current template.

The template hold and toggle constraints are given to the ATPG. Only the

toggle cycles are specified by new values from the input. Any group of hold cycles

followed by toggle cycles result in copying the value from the immediately previous

toggle.

The ATPG communicates these constraints by adding an equivalence rela-

tionship between all consecutive hold cycle scan cells in a chain preceded by a toggle.

Adding equivalence relations helps the ATPG decision making process and avoids

unnecessary backtracks.
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4.3 Residual Test Cubes Generation

In this section, we discuss the first step in the isometric compression flow,

namely the generation of a pool of residual test cubes for N faults. The vast majority

of test data compression schemes work with the concept of a test cube for a fault.

Recall that this is a partially specified vector with 0s, 1s, and don’t cares. Any test

vector contained in such a test cube is a test for the fault. A large body of experimental

data shows that test cubes, even those generated with a dynamic compaction targeting

multiple faults and performing multiple clock compression, have fill rates anywhere

in the range of 0.2% to 5% [28]. Typically, however, locations of only 10% (or less)

of the specified bits in a test cube are essential to detect a fault, i.e., these specified

values cannot be replaced with specified values in other locations. The remaining 90%

of the positions are flexible, i.e., the ATPG may assign specified values to mutually

exclusive subsets of sites, and one can take advantage of this phenomenon to further

improve test compression.

The scheme presented in this paper uses residual test cubes. Given a fault, the

residual test cube is a partially specified vector that retains only those positions of the

regular test cube that correspond to primary inputs and scan cells whose likelihood

of being specified is greater than a specified threshold. In particular, specified values

of all essential scan cells become unconditional parts of a residual test cube. As can

be observed, not every vector contained in a residual cube is a test because of not

yet specified bits that can be determined in several other ways. However, if a fault

is testable, then the ATPG will eventually find a test vector within its residual cube
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Figure 4.5: Extraction of residual test cube

by replacing some don’t care bits with specified values.

4.3.1 Extraction of Residual Test Cube

Example: Consider two scan chains shown in Figure 4.5; in particular, they

drive three logic gates with stuck-at-0 faults on their outputs. Clearly, two gray scan

cells connected to the AND gate are essential to detect the fault, and hence they are

an unconditional part of the residual test cube. Furthermore, setting only one driver

of the 2-input OR gate to 1 is necessary to detect another fault. The ATPG can make

each assignment with a probability of 0.5. If the threshold is set to 0.5, either of the

specified values will make it to the residual test cube. Just as in the previous case

the ATPG will likely assign a single logic value of 1 to the 3-input OR gate. This

time, however, the probability of setting a given input to 1 turns out to equal 0.33,
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Require: Input: Fault f and circuit G. Output: Probability p1 and p0 for every line
in netlist
Procedure is a two pass procedure over the netlist, one forward pass starting from
fault location and one backward pass starting from PO/Scan cells.
We use an intermediate queues, forward queue and mechanism to mark gates.
Step 1: Add fault location to forward queue, with polarity opposite to that of
fault.
Step 2: Also, faulty gate is marked to be processed during backward trace, mag-
nitude of marking is the polarity opposite to that of a fault.
Step 3: Any forward decision to propagate fault effect to PO/SO is equi-probable.
Side-inputs (gate inputs other than by which fault effect is propagating) are marked
to be processed during backward trace, with non-controlling value depending on
the gate type and magnitude equal to fault effect probability value.
Step 4: In a backward trace, start from PO/SO. In case gate has been marked
during forward trace, in case of implication copy magnitude to its inputs (if no
inversions else invert values at the input). Inputs are again marked to be processed
in a levelized manner.
Step 5: For decision nodes equally divide values at the gates output’s to its inputs
(taking care of inversions). Inputs are again marked to be processed when reached
during backward processing.

Figure 4.6: Calculation of probabilities for a fault

and thus none of these specified bits is included in the residual test cube.

4.3.1.1 Procedure to Calculate Probability

The procedure to calculate probabilities for a fault is described in Figure 4.6.

The first step to determine a residual test cube is the computation of the corre-

sponding probabilistic test cube profile. Here, we inject a fault and compute signal

probabilities along its propagation paths. Clearly, as long as there is a unique fault

propagation path, the corresponding probabilities are set to 1. Probabilities associ-



www.manaraa.com

103

 

 (0,1) B

 (0,1) A

 (0.5,0) C

 (0.5,0) D

 (0,1) E

 F (0,1)  s-a-0 

 E (0,1)

 G
  (0,1)

 (0,0)

 (0.5,0) H

 (0,0.5) P
 (0.5,0) Q

 (0.125,0) L  (0.25,0) J

 (0.25,0) K

 (0,0.5) I  (0.125,0) M

 (0.125,0) N

 (0.125,0) O

 (0.5,0) R

Figure 4.7: Computing probabilities

ated with branches of a fan-out stem are equal fractions (inversely proportional to

the number of branches) of the probability that the fault can reach the stem. In a

backward implication process, inputs assume the values based on the corresponding

outputs. In the off-path implication phase, inputs assume the same non-controlling

value as that of the fault propagation. Finally, in the backward justification, the

number of inputs divides the output signal probability.

Example: Every line has a probability for 0(1), named p0(p1) corresponding

to a fault f . Probabilities p0 is the measure of necessity of using a given value at a line

for detection of fault f . In Figure 4.7 line F has a s-a-0 fault f . Detection of f requires

justification of 1 on line F. Lines A and B which are input’s to AND gate feeding line

F need to be set to 1 to justify F as 1. Propagation of fault effect requires line E (off

path gate) to be set to non-controlling value with magnitude equal to probability by
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which fault effect reaches the D-frontier gate E. Line E is set to probabilities, p1=1

(as F is 1) and p0=0. Fault effect reaches gate G with probability equal to input

on-path probability, taking inversions into account. Hence, G is justified assigned a

probability value of (p0,p1) as (0,1). Justifying E to inputs either one of the inputs

C or D needs to be 0, since every decision is equip-probable we divide probability

of E into two parts. C and D both are assigned probability of (0.5,0). In a similar

manner, probabilities for other lines can be calculated.

From the test cubes and the resultant probabilistic test cube profiles, we obtain

the residual test cubes by keeping only specified bits with the corresponding signal

probabilities greater than a certain threshold. Once a certain number of residual test

cubes become available, a residual cube merging process combines these individual

residual cubes generated earlier and yields a multi-fault residual cube. However, this

process terminates when the number of toggle points associated with the resultant

residual test cube exceeds a user-defined threshold. As mentioned earlier, these toggle

points are employed to form a test template whose creation is detailed in Section 4.4.

4.3.2 Typical Residual Cube Profile

Figure 4.8 illustrates an example of a specified bits profile for a large industrial

design. The diagram is a cumulative histogram. On x-axis on the graph represents

probabilities, p in descending order and on y-axis we show number of inputs with

probability greater than or equal to p. The various steps required to generate the
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Figure 4.8: Specified bits profile

histogram are:

1. Randomly pick 1K faults. Start with a fault f , the first fault in the list.

2. Generate a test for fault f using an ATPG.

3. Calculate probability values corresponding to fault f , as described in Figure

4.6.

4. Overlap specified scan-cells with the corresponding probability values.

5. Collect data for every specified scan-cell.

6. Generate a graph as shown in Figure 4.8

H(p) is the column height in Figure 4.8, where entry H(p) in the histogram

indicates the average percentage of bits that the ATPG may assign a specified value

with the probability greater than or equal to p. It is obtained for 1,000 test patterns

having 29,473 specified bits. For example, H(0) = 8 means that 8% of all specified

bits are essential, whereas H(0.125) = 27 indicates that 27% of positions in total can
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Figure 4.9: Toggle points and spans

be assigned specified values with the probability greater than or equal to 0.125.

4.4 Test Template Generation

The isometric decompressor of Figure 4.1 offers an inherent ability to encode

a test cube in a manner that results in low toggling patterns by selecting toggle

points in places where some scan chains change their content values. Recall that

the toggle point requires that the hold register be updated from the ring generator.

If two adjacent scan cells require different values in their residual test cube, then a

toggle point is uniquely determined and is referred to as a prime toggle point. If two

successively specified values in a residual cube are separated by scan cells with don’t

care values, then a toggle point can be placed anywhere between these scan-cells,

provided they have different values. Otherwise, there is no need to add any toggle

point. A span is a set of locations where a toggle points can be placed between a

consecutive 1(0) and 0(1) in a scan chain. For a prime toggle point the span is of
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length 1, as only one such toggle position exists.

Example: Consider the residual test cube of Figure 4.9. As can be seen, there

is one prime toggle point (blue arrows). Other non-prime possible toggle locations are

shown in red. However, locations of two other toggle points remain to be determined,

as they can be placed anywhere between the values of 0 (1) and 1 (0), respectively.

A set of arrows between consecutive 0(1) and 1(0) consists of a span.

A span is called a covered span if a toggle point is inserted in the test template

at any one of the possible toggle locations of the span. In Figure 4.9, the prime toggle

point will cover all the spans.

4.4.1 Covering Algorithm

We discuss covering algorithm in the Toggle gen sub procedure in Figure 4.10.

Covering algorithm’s aim is to minimize the number of toggles that are being assigned,

while generating a test template which successfully detects a large number of faults.

Covering algorithm is a variant of a set cover problem. We can only add a definite

number of toggles to a test template to comply with the low shift toggle requirements.

Prime toggle locations need to be covered to generate a successful test for a fault.

Algorithms first add toggles that cover all prime toggle locations, as shown in Figure

4.11; after adding prime toggle location to the test template, we cover another span

of length 3 was covered by it. We are left with two spans. The number of spans

covered by each possible location is added, possible toggle locations covering the

largest number of spans are added to the test template and covered spans are removed.
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GENERATE TEMPLATE PROCEDURE

Require: Input: Circuit netlist, a set of residual cubes. Output: Possible toggle
locations for template.
STEP 1:Initialize merged residual test cube, MR={}, Total toggles=0.
STEP 2: If Total toggles > allowed switching rate. Calculate toggle positions
using sub-procedure Toggle gen(MR)
STEP 3: If Total toggles < allowed switching rate. Merge next residual cube by
saving(locking) existing toggle locations.

• Overwrite any conflicting PI/PPI values of new residual cube to the corre-
sponding values in MR, with position in MR being overwritten by values in
the residual cube currently being merged.

• If both MR and residual cube being merged have same value, do nothing

• If PI/PPI in MR is not specified and residual cube being merged has a spec-
ified value, copy value from residual cube being merged to MR.

• If PI/PPI in MR is specified and residual cube being merged is unspecified,
do nothing.

• Both residual cube being merged and PI/PPI are unspecified, do nothing

Go back to step 2.
STEP 4: Finally, output toggle positions for the template.

TOGGLE GEN SUB PROCEDURE

Require: Input: Circuit netlist, merged residual cube MR, locked toggle positions,
list of toggles T={} Output: A set of toggle positions T
STEP 1: Generate PT spans for MR. Add all locked toggle locations to list of
toggles T and remove all covered spans.
STEP 2:Add toggles to cover single length prime toggle point spans and remove
other covered spans.
STEP 3: For each cycle i estimate number of spans covered by addition of toggle
at i
STEP 4: Add toggle at maximum sum cycle.
STEP 5: If all spans not covered return to step 2.
STEP 6: Finally output toggle position for intermediate processing

Figure 4.10: Procedure to generate test templates
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Figure 4.11: Covering Algorithm
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Figure 4.12: Conflict Based Merging

In Figure 4.11, a toggle between cycle 1 and cycle 2 covers the remaining two spans.

4.4.2 Rules for Conflict Based Merging

As discussed previously, conflict based merging is an important concept intro-

duced in this work for the generation of a test template. The rules for merging final

merged residual cubes and a new residual cube from the buffer are as follows:

• Overwrite any conflicting PI/PPI values of a new residual cube to the corre-
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sponding values in MR, with the position in MR being overwritten by values in

the residual cube currently being merged. All the previous toggles before adding

the conflicting new residual cube are always added; any previously merged fault

still has all toggles needed to generate a test vector to detect that fault.

• If both MR and residual cube being merged have the same value, keep the older

value, as it is required for detection of more than one fault.

• If PI/PPI in MR is not specified and the residual cube being merged has a

specified value, copy the value from the residual cube being merged to MR as

it is required to detect faults corresponding to the residual cube being merged.

• If PI/PPI in MR is specified and the residual cube being merged is unspecified,

do nothing.

• If both the residual cube being merged and PI/PPI are unspecified, do nothing.

Figure 4.12 illustrates an example of a conflict based merging.

4.4.3 Assigning ATPG Constraints and Equivalences

In addition to controlling the decompressor, a test template directs the ATPG

to produce highly compressible test cubes. Figure 4.7 sketches out the isometric test

compression flow. As can be seen, the main loop includes the extraction of residual

test cubes for randomly selected faults and forming the corresponding test template.

These steps continue until a predetermined number of toggle points are reached.

The test template is subsequently passed to the ATPG in order to make it aware of

additional constraints that have been recently added. The test template divides scan
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chains into hold periods. Within each period only one polarity value is used. Hence,

all scan cells within a period will have the same value; they all will have exactly the

same linear equation, and ATPG will consider all of them equivalent. The ATPG

and EDT-based compression iterate until 64 (this is an implementation dependent

factor) test patterns compliant with the newly created test template are produced,

or a user-defined abort limit is reached. These test patterns are fault simulated, and

the fault list is updated accordingly. If there are still faults on the list, the method

goes back to pick new faults and to create new residual test cubes. Otherwise, the

whole procedure stops.

Having instantiated a test template, one can easily determine all hold periods

where the scan cells assume the same value, i.e., they become ATPG equivalent.

If the ATPG assigns a certain logic value to one of the scan cells within a given

period, it subsequently copies that value to the remaining cells of the same period,

and propagates these values back to the circuit. Moreover, the EDT solver assumes

that the same equation is associated with these cells. As a result, only the first cell

of the period becomes the subject of encoding; this is exactly the only cycle when

the hold register can be reloaded with the new content of the ring generator.

As soon as a scan-cell is specified as a result of an ATPG implication or

decision, all the equivalent scan-cells are also assigned the same value. Assigning

ATPG equivalences help in the following manner:

• Larger number of possible conflicts are immediately detected, and hence it re-

duces the number of ATPG backtracks.



www.manaraa.com

112

Shift 10 Shift 9 Shift 8 Shift 7 Shift 6 Shift 5 Shift 4 Shift 3 Shift 2 Shift 1 Scan-
Chain 

H H T T H H H H T T H/T 

0 0 0 1 1 1 1 1 1 0 Value 

Not Enc. Not Enc. Enc. Enc. Not  Enc. Not Enc. Not Enc. Not Enc. Enc. Enc. Enc./Not 
Enc. 

 

Figure 4.13: EDT solver and the test template

• Number of EDT aborts are reduced, as now large number of additional impli-

cations are generated due to equivalence relations, which leads to better perfor-

mance during dynamic compaction.

• Reduces the validating effort of the EDT solver as equivalence relation does not

allow the ATPG to put two opposite values in a set of equivalent cells, which

may otherwise result in a backtrack.

4.4.4 EDT Solver and Test Template

EDT solver requires test template, to constraint the solver. When test tem-

plate is used a toggle hold sequence occurs, only the toggle cycles needs to be encoded

(consumes free -variables) not the consecutive holds. An example shown in Figure

4.13 illustrates the concept.

Example: Given a scan-chain of length 10, top most row shows shift cycle

number, send row shows -if a toggle or a hold occurs for the particular cycle, third

row gives the value assigned to scan-cell and last row shows if the scan-cell is encoded

or not (we assume no Xs right now in the above scenario). The above example clearly

shows that only toggle cycles are encoded.
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4.4.5 Algorithmic Overview

Generation of a template is an important step and centerpiece of isometric

compression scheme. The template generated is good for 64 patterns, therefore it

needs to be flexible enough to generate a significantly different pattern for each of the

64 patterns. Inefficient templates can lead to pattern count explosion due to reduced

fortuitous detection and fault coverage drop.

Our present definition of template captures some of the required criteria for a

good template. We define template as a set of toggle points, a value is not assigned

to any scan-cell or a set of scan-cells. The advantage of the above definition lies in

the following fact:

• Template is less constrained; if values were added, all 64 patterns will have the

same value for a particular set of scan-cells, resulting in a loss of flexibility and

fortuitous detection.

• The ATPG has the flexibility to generate patterns for the current set of unde-

tected faults.

• A test for incompatible faults may be generated, as now the same scan-cell can

be specified differently in two patterns.

• Patterns adhere to current switching constraints given by the user.

The procedure to generate template works illustrated in Figure 4.10 works

incrementally by picking up a residual cube and merging it to an empty MR cube.

Conflict based merging is carried out using the rules described in Section 4.1. After

merging, the covering algorithm described in Toggle Gen Sub in Figure 4.10 is run to
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assign toggle points set t1 for the current specified positions of the MR. Next, another

residual cube is merged to MR; if the specified value of any of the scan-cells in MR

and second residual cubes conflict, overwrite the value in MR with the value of the

scan cell in the second residual cube.

In Figure 4.12, we show an example of a merged cube and merged residual

cube post merging of another residual cube. The left most scan-cell has a 0 in an

initial merged residual cube. A new residual cube with 1 in the left most position is

merged using conflict based merging procedures and 0 is overwritten by 1. Merging

with conflicts of residual cubes has its benefits as discussed before. Post merging all

the toggles in set t1 are added to MR. All covered spans are removed, and covering

algorithm is run to add additional toggle points to cover spans that are still not

covered. Let the new additional toggle set be t2. Now the new set of locked toggle

points are t1 and t2; when another residual cube is added all, t1 and t2 are first added

to remove all covered spans and remaining spans are covered by additional toggles

generated using the covering algorithm.

This incremental procedure of merging additional residual test cubes to final

MR using the conflict based merging technique continues until we do not overrun our

allowed of toggle budget for a given switching activity. Once we have crossed the

allowed toggle budget the final test template is given to the EDT solver to change

the appropriate equations as well as the ATPG simultaneously to add equivalence

relations among scan-cells. Sixty four ATPG patterns are generated using this new

template.
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4.5 Multiple Template

Handling a large number of scan chains with a single test template may com-

promise both the quality of compression and a desired toggling rate. It appears that

a test data decompressor deploying multiple template registers is proving easier to

scale up, and thus to handle pattern counts targeting more aggressive reductions of

toggling.

4.5.1 Hardware Architecture

The basic architecture of a revised test data decompressor is shown in Figure

4.14. It is comprised of a few template registers (two in the figure) associated with

disjoint groups of scan chains. Due to their segmented structure, a hold register and

a phase shifter can drive these scan groups in an independent fashion. Since each

hold register is reloaded regardless of other registers, the number of toggling points

can be effectively reduced and assigned more flexibly while maintaining compression

capabilities of the whole scheme.

4.5.2 Overall Flow

Multiple test template scheme results in a flow slightly different from the

usual flow. The first step in the flow consists of grouping scan-chains. Scan-chains

are divided into disjoint groups. A well formed group should adhere to the following

properties:

• Scan-chains which set up excitation and propagation conditions for the same

set of faults should be in the same group.
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Figure 4.14: Multiple test template usage

• Groups should be selected in a manner that chains in the group, on average,

have a low probability of opposite value requirements among scan-cells (of the

same scan chain) in the adjacent neighborhood.

Single template flow, described in Figure 4.8, needs to be modified to accommodate

multiple test templates for test generations. Major modifications in the flow are

enumerated below:

1. Given a fault list, the flow starts with dividing scan-chains into various groups.

2. Conflict based merging of residual cubes occurs in a similar fashion as a single

template case.

3. Templates for each k scan-chain groups are extracted individually, after the

merging of residual cubes.
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4. Decompressor and the ATPG are constrained using k test templates.

5. Switching threshold used as a stopping criteria is now an average of the number

of toggles for all k scan-groups.

4.5.3 Procedure to Generate Scan Groups:

Scan groups are generated using a randomized algorithm. The procedure is a

variation of well known k-mean clustering algorithm. Before delving into the actual

procedure we introduce some new terminology that will be used in the future. Resid-

ual Weight: For every scan cell, two values RW0 and RW1, i.e. residual weight for

zero and one, are stored for each specified position in a residual cube. In this case, the

specified value is 1 followed by a 0 in consecutive scan-cells in the scan chain and it

is a prime toggle point, then RW1=1 and RW0=0 for a scan cell with 1 and RW0=1

and RW1=0 for the scan-cell with 1, for a given fault. In this case, the toggle point

is a possible toggle point instead, RW value is distributed equally among all possible

toggle locations. Sum of Residual Weights SRW: Sum of residual weights consist of

two components: SRW0 and SRW1 for each scan cell. It is the sum of RW0 and RW1

for all faults in the targeted fault list. The distance between Scan Chains i and j,

D(I, j)=
∑

a=0
a<(longestchain)(|SRWi(1)−SRWj(1)|+ |SRWi(0)−SRWj(0)|)

The various steps of the procedure to partition scan-chains into disjoint groups

are given below:

1. Select a sampled list FS of 5% of all faults from the set N faults. Compute the

residual cubes for one fault in FS, as described before in Section III.
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2. While generating the residual cubes, calculate the individual residual weights.

Calculate SRW values for targeted fault set FS. Calculate distance D(I,j) be-

tween all scan chain pairs.

3. Assign k chains as seed cluster centers and assign each chain to a cluster, de-

pending on the lowest distance cluster center.

4. Calculate the new cluster center by taking the mean of all elements in the

cluster and choosing the minimum distance node from the mean as the new

cluster center.

5. Repeat step E unless the result from two consecutive iterations results in the

same cluster center, or the number of iterations exceed the maximum number

of allowed iterations.

6. Scan through the chain list and re-assign the chain to the closest cluster center

that is non-empty, i.e. number of chains in a group< (Number of chains)/ k or

else assign chain to closest non-empty cluster.

7. Output the group number for each individual scan chain.

8. Once k scan chain groups of equal size are formed, the template is generated

for each individual group, separately.

4.6 Isometric Patterns and Compression

Isometric compression has an advantage that only the first toggle among a set

of consecutive toggle hold sequences needs to be encoded. The rest of the scan-cells

in the chain carry the same equation as the first scan cell in the sequence, resulting
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Figure 4.15: Specified position histogram

in the specification of some additional scan-cells without the need of any input data.

The above phenomena can help reduce test lengths significantly. Isometric patterns

encode a larger number of specified positions on average than the total number of

free-variables (input channel bits) available via the tester. We conducted a small ex-

periment to analyze the number of specified positions, required by all deterministically

targeted faults that are satisfied by the hold.

The various steps involved in our experimental setup are as follows:

1. Generate isometric test patterns for a given set of k faults.

2. Take each isometric test pattern and set of faults that were specifically targeted.

3. Relax (make X) each specified bit individually one by one, if all deterministically

targeted faults are still detected, permanently change the specified position to

X, else, revert back to the original values.
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Figure 4.16: Number of faults detected

4. Count the number of specified sequences of the toggle followed by consecutive

holds and the total number of specified positions.

In Figure 4.15, we compare the total number of specified positions with the

number of positions satisfied by the hold for two circuits; the total number of re-

quired specified positions are normalized to 100. Approximately 45% of the specified

positions are encoded by the hold and do not require any input data to encode them,

resulting in significantly higher compression.

Later in Figure 4.16, we compare the cumulative number of faults detected

until a given pattern count, for baseline and isometric compression schemes; isomet-

ric scheme detect the same number of faults by 9K patterns in comparison to 25K

patterns required by the baseline compression scheme.
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Table 4.1: Circuit Properties

CKT Size FF Num of Longest Input Output Decompressor
Num Chains Chain Channels Channels Size

D1 1.1M 75K 382 190 2 5 32
D2 3.3M 73K 244 300 3 3 32
D3 1.3M 52K 209 250 3 3 32
D4 107K 1640 15 115 1 1 16
D5 500K 28K 400 71 4 8 28
D6 400K 41K 400 104 2 5 22
D7 2.2M 167K 1200 142 16 16 65
D8 1.2M 75K 400 202 2 5 32
D9 1.3M 68K 658 104 3 6 64

4.7 Experimental Results

The isometric test compression has been verified by conducting a series of

experiments with nine industrial designs. The basic data regarding the designs, such

as the number of gates, the number of scan cells, the number of scan chains, the size of

the longest chain, the number of EDT input channels, and the size of decompressor are

listed in Table 4.1. All experiments were performed for stuck-at tests. The same table

reports the fault coverage numbers for a default EDT scheme with approximately a

50% switching ratio for scan-in shift modes as well as three different toggling values

used in all experiments presented in this section. A single test session consists of two

steps that are repeated several times: (1) shifting in a next test template, and (2)

applying 64 test patterns corresponding to this template.

4.7.1 Results for Stuck-at Faults

The results of the experiments are summarized in Tables 4.2 4.5. It is assumed

that the number of toggle points per test template is selected in such a way that the

resultant scan shift toggling rates are equal to 25% (here the number of toggling
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Figure 4.17: Distribution of specified bits

points equals approximately c/2, where c is the number of scan shift cycles), 17%,

and 12%. Table 4.2 reports the number of test patterns. Note that the test coverage

(see Table 4.2) remains unaffected in each test case. Furthermore, all experiments

were performed for 1, 2, 3, and 4 test templates.

Table 4.3 presents the corresponding reduction of input data volume over the

conventional EDT-based solution. Note that the data volume for the new method

includes the test template data. The results of Table 4.2 clearly indicate that applica-

tion of the new scheme produces remarkable results. The isometric test compression

compares favorably with earlier test data reduction solutions as far as pattern and

compression numbers are concerned. In all test cases, compression rates are signif-



www.manaraa.com

123

icantly higher than those of the standard EDT. For example, the observed volume

reduction relative to the EDT, even with the test templates overhead (circa 2% as

every template is used for 64 successive test patterns), varies from 28% to 77%, and

its average value computed across the nine examined industrial designs is equal to

43.95%. Clearly, the proposed scheme elevates compression ratios to levels beyond

what is achievable through the conventional static and dynamic reseeding. Further-

more, as shown by the last column of Table 4.2, in all examined test cases the switch-

ing activity is reduced to 25%, 17%, and 12% compared to the reference value of

49.31% obtained as the average weighted transition metric over all nine designs for

the standard EDT scheme. The resultant scan-in shift induced switching activity,

measured by the normalized weighted transition metric (WTM) [59], is shown in Ta-

ble 4.4, Table 4.5 delivers additional data regarding test power dissipation observed

during all experiments. In particular, one can find all WTM metrics for scan shift-

out operations in Table 4.5. Design D7 is of special interest, as it represents a test

case where specified bits occurring in test cubes are highly clustered with abnormally

high, though local, fill rates. Figure 4.17 illustrates a distribution of specified bits

for three different test patterns across successive shift cycles. As can be seen, two

patterns (represented by blue and red curves) have very high fill rates between 130

and 140 shift cycles. As a result, earlier compression schemes would either resort to

increasing pattern counts because of test cube low compressibility or declare a com-

pression abort. On the contrary, the isometric test compression addresses this issue

seamlessly with no negative impact on the test data volume and test time.
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Table 4.2: Test Length for Various Switching Rates and Multiple Templates

CKT Cov TL 25 %: Num. of Scan Grps TL 17 %: Num. of Scan Grps TL 12 %: Num. of Scan Grps
DFLT 1 2 3 4 DFLT 1 2 3 4 DFLT 1 2 3 4

D1 96.71 15040 8512 8320 8000 7963 15040 9344 8832 8576 8448 15040 11136 10389 10116 9853
D2 93.31 5696 3968 3904 3891 3872 5696 4072 4135 4058 4074 5696 4979 5028 4702 4638
D3 94.56 20032 6592 7173 6810 6896 20032 7015 7357 6829 7153 20032 7361 7459 7307 7126
D4 95.31 4992 2,896 2846 2835 2769 4992 3628 3563 3407 3347 4992 4215 4026 3980 3932
D5 99.26 7938 4736 4652 4476 4431 7938 5028 4943 4732 4758 7938 5596 5307 5110 4921
D6 98.63 2048 1472 1457 1382 1361 2048 1641 1637 1593 1576 2048 1994 1920 1816 1778
D7 91 2496 576 593 568 572 2496 837 806 814 793 2496 1025 1018 960 942
D8 97.04 8064 5,120 4827 4602 4516 8064 5834 5624 5257 5114 8064 6015 5853 5405 5318
D9 95.94 9359 6471 6291 6059 6012 9359 7002 6738 6472 6370 9359 7492 7328 6875 6753

Table 4.3: Volume for Various Switching Rates and Multiple Templates

CKT Cov VO 25 %: Num. of Scan Grps VO 17 %: Num. of Scan Grps VO 12 %: Num. of Scan Grps
DFLT 1 2 3 4 DFLT 1 2 3 4 DFLT 1 2 3 4

D1 96.71 7.04 3.98 3.89 3.74 3.73 7.04 4.37 4.13 4.01 3.95 7.04 5.21 4.86 4.74 4.61
D2 93.31 5.51 3.84 3.78 3.76 3.75 5.51 3.94 4.00 3.93 3.94 5.51 4.82 4.86 4.55 4.49
D3 94.56 15.02 4.94 5.38 5.11 5.17 15.02 5.26 5.52 5.12 5.36 15.02 5.52 5.59 5.48 5.34
D4 95.31 0.69 0.40 0.39 0.39 0.38 0.69 0.50 0.49 0.47 0.46 0.69 0.58 0.56 0.55 0.54
D5 99.26 3.14 1.87 1.84 1.77 1.75 3.14 1.99 1.96 1.87 1.88 3.14 2.21 2.10 2.02 1.95
D6 98.63 0.59 0.42 0.42 0.40 0.39 0.59 0.47 0.47 0.46 0.45 0.59 0.57 0.55 0.52 0.51
D7 91 6.34 1.46 1.51 1.44 1.45 6.34 2.13 2.05 2.07 2.01 6.34 2.60 2.59 2.44 2.39
D8 97.04 3.90 2.48 2.33 2.23 2.18 3.90 2.82 2.72 2.54 2.47 3.90 2.91 2.83 2.61 2.57
D9 95.94 4.26 2.95 2.86 2.76 2.74 4.26 3.19 3.07 2.95 2.90 4.26 3.41 3.34 3.13 3.07



www.manaraa.com

126

Table 4.4: Toggling Rates (WTM) Scan Shift-in

CKT LP 25% 25 %: Num. of Scan Grps LP 17% 17 %: Num. of Scan Grps LP 12% 12 %: Num. of Scan Grps
DFLT 1 2 3 4 DFLT 1 2 3 4 DFLT 1 2 3 4

D1 23.94 21.31 22.29 22.09 22.7 16.76 16.72 16.53 16.27 16.74 14.13 11.63 11.87 12.37 12.15
D2 24.06 23.07 23.17 23.81 24.09 16.07 15.78 16.42 16.6 17.01 13.01 10.72 12.01 12.19 12.31
D3 24.16 20.56 21.08 21.49 21.92 17.44 16.83 16.66 16.28 16.96 12.76 11.44 11.49 12.06 12.2
D4 23.73 22.69 22.98 22.85 22.87 17.49 17.15 16.12 16.51 16.85 12.59 11.09 11.14 11.72 12.01
D5 23.77 23.18 23.32 23.64 24.66 16.58 16.24 16.07 16.53 16.58 12.83 10.23 11.15 11.93 11.85
D6 22.94 21.54 21.96 22.74 23.13 16.5 16.4 15.39 16.04 16.61 11.64 11.26 11.25 11.98 11.63
D7 23.5 23.07 23.8 24.08 24.91 16.83 16.63 16.41 16.71 17.08 13.88 10.13 10.68 12.14 11.88
D8 23.01 20.76 21.23 21.46 22.08 17.29 16.72 16.01 16.14 16.62 12.09 10.63 11.44 11.51 11.8
D9 24.22 24.13 23.09 24.25 24.42 17.32 16.94 16.72 16.74 16.95 12.41 11.19 11.73 11.41 12.15

Table 4.5: Toggling Rates (WTM) Scan Shift-out

CKT LP 25% 25 %: Num. of Scan Grps LP 17% 17 %: Num. of Scan Grps LP 12% 12 %: Num. of Scan Grps
DFLT 1 2 3 4 DFLT 1 2 3 4 DFLT 1 2 3 4

D1 24.26 21.85 22.45 22.52 23.16 16.76 16.98 16.62 16.34 16.87 14.16 11.74 12.41 12.54 12.23
D2 24.68 23.21 23.20 24.66 24.27 16.07 16.93 16.95 16.80 17.05 13.07 11.40 12.37 12.85 12.58
D3 24.24 21.22 21.27 21.71 22.68 17.44 15.88 17.19 16.64 17.61 13.18 11.87 11.64 12.12 12.35
D4 24.11 23.34 23.27 23.05 23.47 17.49 15.94 16.20 17.16 16.97 12.69 11.55 11.62 12.02 12.44
D5 23.90 24.65 23.42 23.96 25.08 16.59 16.60 16.59 16.61 17.24 13.00 10.91 11.29 11.92 12.42
D6 23.24 21.79 22.55 22.82 23.25 16.50 16.18 15.57 16.94 16.85 12.16 11.89 11.55 12.39 12.20
D7 24.00 23.62 23.99 24.39 25.22 16.84 16.08 16.67 16.81 17.74 14.00 10.81 10.83 12.76 12.19
D8 23.04 21.74 21.72 21.95 22.69 17.29 16.36 16.40 16.68 17.20 12.65 11.16 11.82 11.78 12.39
D9 24.44 24.13 23.57 24.34 24.49 17.32 16.57 16.83 16.93 17.57 12.77 11.45 11.81 12.69 12.53
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Table 4.6: Results for non-BIST ready designs

Random Method1 +
ATPG New Ordering Method2 Isometric

CKT FC TL TL %Red TL %Red TL %Red
D1 96.71 15040 11016 26.8 12212 18.8 7963 47.1
D2 93.31 5696 4385 23.0 4437 22.1 3872 32.0
D3 94.56 20032 9672 51.7 11667 41.8 6896 65.6
D4 95.31 4992 4232 15.2 4033 19.2 2769 44.5
D5 99.26 7938 6389 19.5 6933 12.7 4431 44.2
D6 98.63 2048 1706 16.7 1802 12.0 1361 33.5
D7 91 2496 1893 24.2 1914 23.3 572 77.1
D8 97.04 8064 5918 26.6 6273 22.2 4516 44.0
D9 95.94 9359 7626 18.5 7624 18.5 6012 35.8

Avg. 75665 52837 30.2 56893 24.8 38392 49.3

4.7.2 Comparison With a Low-Power Compression Scheme

In Figure 4.18 we compare the results for data volume obtained by the default

baseline ATPG with a 50% toggle rate, a commercial low power compression scheme

with 25% toggling during shift, and the proposed isometric compression scheme with

25% toggling and using multiple template flow (four templates were used). The data

volume values are normalized with respect to the default ATPG data volume, which

is assigned a value of 100. Isometric compression results in a 47% reduction in data

volume over the default ATPG and the default low power by 62%.

4.7.3 Impact of Using Multiple Templates

In Figure 4.19, we compare normalized test lengths obtained by average test

length obtained by 1 template case assigned a value of 100 with 2, 3, and 4 templates

for 25%, 17%, and 12% toggle rates. As illustrated in the figure, multiple templates

are most effective for lower toggle rates. A 12% toggle rate using 4 templates results in

a reduction of 10% test length in comparison to test lengths obtained by 1 template.
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A toggle rate of 25% results in 5% reduction in the test length.

4.7.4 Comparison With Other ATPG Techniques

We compare the results obtained by Method-1 combined with test enumeration

based fault ordering and Method-2 discussed in Chapter 3 with isometric compression

approach in Table 4.6. Test lengths are normalized with respect to those obtained

by the default ATPG which is given a test length of 100. The isometric scheme out

performs all ATPG decision schemes with a 49% reduction in pattern count using 4

templates in comparison to the baseline compression scheme.
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CHAPTER 5
CONCLUSIONS

This thesis focused on two major issues thst incurred while testing digital

circuits using compression: pattern count and low power test.

First, we propose methods to guide line justification and D-propagation deci-

sions in ATPG. Static and dynamic measures, which are updated during test gener-

ation, are used to achieve substantial reduction in test set sizes. A method to select

between static and dynamic measures, based on the level of the decision node, is also

given. Experimental results on several industrial designs show that, on average, the

proposed methods reduce by 27% the sizes of the test sets generated by a state of the

art commercial ATPG.

Further, we propose a new ATPG which uses a novel FFR based fault ordering

technique and guidance measures for justification and fault effect propagation. Ex-

perimental results on several industrial designs show that for BIST ready designs on

average, the proposed ATPG reduces test set sizes by 24% in comparison to a state

of the art commercial ATPG for non-BIST ready designs and 28% for BIST ready

designs. Transition faults are difficult to test and often result in longer test lengths,

we propose a new fault ordering technique based on test enumeration. This ordering

technique when combined with Method-1 [5] for stuck-at fault, resulted in a 30%

reduction in test length. A new guidance approach was also proposed for transition

faults. Test set sizes were reduced by 32% for transition faults, using the proposed

methods.



www.manaraa.com

130

With the size of test patterns growing at alarming rates, the isometric test

compression proposed in this thesis provides a coherent way to generate and apply

test patterns compressed beyond the limits achievable by existing solutions, while

substantially reducing power dissipation during scan loading. The proposed scheme

is non-intrusive to the core logic, and offers a programmable means to control the scan

toggling rates. Furthermore, it has the ability to trade off the test power consumption

and the resultant compression. As the new compression preserves all benefits of

continuous flow decompression, it provides a smooth migration path to the next-

generation test data compression solutions while maintaining a very high quality of

test, minimizing design, and manufacturing cost impacts. On average, the test set

sizes were reduced by 49%, in comparison to a commercial ATPG tool.

5.1 Future Work

Traditional fault models like stuck-at and transition fault models define fault

sites at the boundary of a cell. However, 50% of the faults are estimated to be

present internally in cells. Defect-oriented fault models were proposed in [14]. In

[14], new user defined fault models were developed depending on the cells internal

defects; the approach is known to detect real defects in the field. However, compact

test generation for defect-aware fault models is difficult as:

• Fortuitous detection of faults is low, as a definite combination of inputs needs

to be applied to detect user-defined faults.

• The test has a higher number of specified positions per fault, hence are not
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easily compressible in a compression environment.

The generation of compact test generation using isometric test compression

scheme is still an unexplored area. Consecutive hold and toggle cycles used in isomet-

ric schemes results in additional constraints, leading to reduced fortuitous detection.

In isometric test compression scheme, multiple template registers were used to

provide flexibility. However, a given assignment of groups of scan-chains permanently

to a template register may work only for few faults. A scheme that assigns scan-chains

to a scan-group depending on the current set of undetected faults will provide more

flexibility during test generation, leading to compact test sets.
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